refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 527 results
Sort by

Filters

Technology

Platform

accession-icon GSE49896
MicroRNA-150 Contributes to the Proficiency of B-Cell Receptor Signaling in Chronic Lymphocytic Leukemia by Regulating Expression of GAB1 and FOXP1 Genes
  • organism-icon Homo sapiens
  • sample-icon 95 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

We examined the microRNAs (miRNAs) expressed in chronic lymphocytic leukemia (CLL) and identified miR-150 as the most abundant, but with leukemia-cell-expression levels that varied among patients. CLL cells that expressed ZAP-70 or that used unmutated IGHV each had a median expression-level of miR-150 that was significantly lower than that of ZAP-70-negative CLL cells or those that used mutated IGHV. In samples stratified for expression of miR-150, CLL cells with low-level miR-150 expressed relatively higher levels of forkhead box P1 (FOXP1) and GRB2-associated binding protein 1 (GAB1), genes with 3 UTRs having evolutionary-conserved binding sites for miR-150. High-level expression of miR-150 could repress expression of these genes, which encode proteins that may enhance B-cell receptor (BCR) signaling, a putative CLL-growth/survival signal. Also, high-level expression of miR-150 levels was a significant independent predictor of longer treatment-free-survival (TFS) or overall survival (OS), whereas an inverse association was observed for high-level expression of GAB1 or FOXP1 for OS. This study demonstrates that expression of miR-150 can influence the relative expression of GAB1 and FOXP1 and the signaling potential of the B-cell receptor (BCR), thereby possibly accounting for the noted association of expression of miR-150 and disease outcome.

Publication Title

miR-150 influences B-cell receptor signaling in chronic lymphocytic leukemia by regulating expression of GAB1 and FOXP1.

Sample Metadata Fields

Specimen part, Disease stage

View Samples
accession-icon SRP094550
Transcriptomic and anatomic parcellation of 5-HT3AR expressing cortical interneuron subtypes revealed by single-cell RNA sequencing
  • organism-icon Mus musculus
  • sample-icon 204 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Cortical GABAergic interneurons constitute a highly diverse population of inhibitory neurons that are key regulators of cortical microcircuit function. An important and heterogeneous group of cortical interneurons specifically expresses the serotonin receptor 3A (5-HT3AR) but how this diversity emerges during development is poorly understood. Here we use single-cell transcriptomics to identify gene expression patterns operating in Htr3a-GFP+ interneurons during early steps of cortical circuit assembly. We identify 3 main molecular types of Htr3a-GFP+ interneurons, each displaying distinct developmental dynamics of gene expression. The transcription factor Meis2 is specifically enriched in a type of Htr3a-GFP+ interneurons spatially confined to the cortical white matter. These MEIS2 expressing interneurons appear to originate from a restricted region located at the embryonic pallial-subpallial boundary. Overall, this study identifies MEIS2 as a subclass-specific marker for 5-HT3AR-containing interstitial interneurons and demonstrates that the transcriptional and anatomical parcellation of cortical interneurons is developmentally coupled. Overall design: Single cell transcriptomics of cortical interneurons FACS sorted according to GFP-Htr3a+. Acquired from mouse brains of 3 different developmental ages: E18, P2, P5

Publication Title

Transcriptomic and anatomic parcellation of 5-HT<sub>3A</sub>R expressing cortical interneuron subtypes revealed by single-cell RNA sequencing.

Sample Metadata Fields

Subject

View Samples
accession-icon SRP028528
Homo sapiens Transcriptome or Gene expression
  • organism-icon Homo sapiens
  • sample-icon 25 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Transcriptome sequencing of Chronic Phase and Blast Crisis CML, normal cord blood cells, and normal cord blood cells transduced with lentiviral vectors

Publication Title

ADAR1 promotes malignant progenitor reprogramming in chronic myeloid leukemia.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE50431
Gene expression profiling of normal mouse hepatocyte, premalignant hepatocytes and fully malignant HCC
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

Gene expression was analyzed and compared of normal mouse hepatocyte, premalignant hepatocytes and fully malignant HCC cells. The results provide valuable information about the gene expression alterations during the chronic process of liver cancer development.

Publication Title

Identification of liver cancer progenitors whose malignant progression depends on autocrine IL-6 signaling.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP078862
Next-generation sequencing and quantitative analysis of wild type and p110gamma -/- tumors and tumor-associated macrophages
  • organism-icon Mus musculus
  • sample-icon 20 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Purpose: The goals of this study were to identify quantitative gene expression differences between whole tumor and tumor-associated macrophages (TAMs) derived from Lewis lung carcinoma (LLC) tumors grown in wild type and PI3Kinase-gamma-null mice. Methods: mRNA profiles of whole tumor or tumor-associated macrophages (CD11b+Gr1- cells) from wild type (WT) or PI3Kinase-gamma-knockout (p110g-/-) mice were generated by single deep read sequencing, in triplicate or quadruplicate, using Illumina HiSeq 2000. The sequence reads that passed quality filters were aligned to mouse transcriptome using the bowtie2 aligner. Gene-level summaries were normalized and analyzed for differential expression using DESeq. Overall design: mRNA profiles of whole tumor and tumor-associated macrophages from WT and p110g-/- mice were generated by deep sequencing in triplicate or quadruplicate using Illumina HiSeq 2000.

Publication Title

PI3Kγ is a molecular switch that controls immune suppression.

Sample Metadata Fields

Specimen part, Subject, Time

View Samples
accession-icon SRP043038
Next Generation Sequencing and Quantitative Analysis of Wild Type and p110gamma-/- macrophages
  • organism-icon Mus musculus
  • sample-icon 18 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Purpose: The goals of this study were to identify quantitative gene expression differences between macrophages derived from wild type and PI3Kgamma null macrophages Methods: mRNA profiles of MCSF, IL4 and IFNg/LPS stimulated macrophage wild-type (WT) and PI3Kinase gamma knockout (p110g-/-) mice were generated by single read deep sequencing, in triplicate, using Illumina HiSeq2000. The sequence reads that passed quality filters were aligned to mouse transcriptome using the bowtie2 aligner. Gene-level summaries were normalized and analyzed for differential expression using DESeq. qRT–PCR validation was performed using SYBR Green assays. Conclusions: Our study represents the first detailed analysis of the role of p110g in the control of the macrophage immune response, with biological replicates, generated by RNA-seq technology. Overall design: mRNA profiles of wild type (WT) and p110g-/- macrophages were generated by deep sequencing, in triplicate, using Illumina HiSeq2000.

Publication Title

PI3Kγ is a molecular switch that controls immune suppression.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE15500
Analysis of differences in gene expression due to small adaptive mutations in RNA polymerase B' subunit (rpoC)
  • organism-icon Escherichia coli
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix E. coli Genome 2.0 Array (ecoli2)

Description

Studies of the RNA polymerase-binding molecule ppGpp in bacteria and plants have shown that changes to the kinetics of the RNA polymerase can have dramatic biological effects in the short-term as a stress response. Here we describe the reprogramming of the kinetic parameters of the RNAP through mutations arising during laboratory adaptive evolution of Escherichia coli in minimal media. The mutations cause a 10- to 30-fold decrease in open complex stability at a ribosomal promoter and approximately a 10-fold decrease in transcriptional pausing in the his operon. The kinetic changes coincide with large scale transcriptional changes, including strong downregulation of motility, acid-resistance, fimbria, and curlin genes which are observed in site-directed mutants containing the RNA polymerase mutations as well as the evolved strains harboring the mutations. Site-directed mutants also grow 60% faster than the parent strain and convert the carbon-source 15% to 35% more efficiently to biomass. The results show that long-term adjustment of the kinetic parameters of RNA polymerase through mutation can be important for adaptation to a condition.

Publication Title

RNA polymerase mutants found through adaptive evolution reprogram Escherichia coli for optimal growth in minimal media.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE26869
Regulation of myogenic progenitor proliferation in human fetal skeletal muscle by BMP4 and its antagonist Gremlin.
  • organism-icon Homo sapiens
  • sample-icon 22 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Analysis of the transcriptome of mononuclear side population (SP) and main population (MP) cells of human fetal skeletal muscle from 12 human subjects of gestational age 14-18 weeks.

Publication Title

Regulation of myogenic progenitor proliferation in human fetal skeletal muscle by BMP4 and its antagonist Gremlin.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE38290
Functional analysis of ABCB5 in melanoma cells
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

Functional analysis of ABCB5 in A375 and G3361 melanoma cells, by comparing stably-transfected controls to ABCB5-shRNA-targeted cells.

Publication Title

ABCB5 maintains melanoma-initiating cells through a proinflammatory cytokine signaling circuit.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE29664
DNA microarray analysis and functional profile of pituitary transcriptome under core-clock protein BMAL1 control
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430A 2.0 Array (mouse430a2)

Description

To find BMAL1-regulated genes in mice pituitary gland we performed a differential microarray from wild-type vs Bmal1-/- knock-out mice

Publication Title

Chromatin remodeling as a mechanism for circadian prolactin transcription: rhythmic NONO and SFPQ recruitment to HLTF.

Sample Metadata Fields

Sex, Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact