refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 428 results
Sort by

Filters

Technology

Platform

accession-icon GSE42742
Murine microenvironment metaprofiles associate with human cancer etiology and intrinsic subtypes
  • organism-icon Mus musculus
  • sample-icon 56 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

We developed a mouse model that captures radiation effects on host biology by transplanting unirradiated Trp53 null mammary tissue to sham or irradiated hosts. Gene expression profiles of tumors that arose in irradiated mice are distinct from those that arose in nave hosts.

Publication Title

Murine microenvironment metaprofiles associate with human cancer etiology and intrinsic subtypes.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP075051
microRNAs with an AAGUGC seed motif constitute an integral part of a signaling network driving NSCLC cell proliferation
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

miR-372-3p target identification mRNA level Overall design: Differential expression analysis 30h post transfection with miR-372-3p mimics

Publication Title

microRNAs with AAGUGC seed motif constitute an integral part of an oncogenic signaling network.

Sample Metadata Fields

Specimen part, Cell line, Treatment, Subject

View Samples
accession-icon GSE15949
Hypoxia inducible factors 1 and 2 are important transcriptional effectors in primary macrophages experiencing hypoxia
  • organism-icon Homo sapiens
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Ischemia exists in many diseased tissues including arthritic joints, atherosclerotic plaques and malignant tumors. Macrophages accumulate in these sites and upregulate genes in response to the hypoxia present.

Publication Title

Hypoxia-inducible factors 1 and 2 are important transcriptional effectors in primary macrophages experiencing hypoxia.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE85955
Pericyte-fibroblast transition promotes tumor growth and metastasis
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Vascular pericytes, an important cellular component, in the tumor microenvironment, are often associated with tumor vasculatures and their functions in cancer invasion and metastasis are poorly understood. Here we show that PDGF-BB induces pericyte fibroblast transition (designated as PFT), which significantly contributes to tumor invasion and metastasis. Gain- and loss-of-function experiments demonstrate that the PDGF-BB-PDGFR signaling promotes PFT in vitro and in in vivo tumors. Genome-wide expression analysis indicates that PDGF-BB-activated pericytes acquire mesenchymal progenitor features. Pharmacological inhibition and genetic deletion of PDGFR ablate the PDGF-BB-induced PFT. Genetic tracing of pericytes with two independent mouse strains, i.e., TN-AP-CreERT2:R26R-tdTomato and NG2:R26R-tdTomato, shows that PFT cells gains stromal fibroblast and myofibroblast markers in tumors. Importantly, co-implantation of PFT cells with less-invasive tumor cells in mice markedly promotes tumor dissemination and invasion, leading to an increased number of circulating tumor cells (CTCs) and metastasis. Our findings reveal a novel mechanism of vascular pericytes in PDGF-BB-promoted cancer invasion and metastasis by inducing PFT and thus targeting PFT may offer a new treatment option of cancer metastasis.

Publication Title

Pericyte-fibroblast transition promotes tumor growth and metastasis.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE67172
Gene expression in murine colon mucosa following activation of stromal Hedgehog signalling
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.1 ST Array (mogene21st)

Description

In the intestine, Hedgehog (Hh) signalling orchestrates epithelial homeostasis in a bidirectional loop. Differentiated enterocytes secrete the ligand leading to active downstream signaling exclusively in the stroma. In turn, Hh-driven stromal factors contribute to the control of intestinal stem cell numbers and induce epithelial differentiation.

Publication Title

Stromal Hedgehog signalling is downregulated in colon cancer and its restoration restrains tumour growth.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE21713
mRNA expression data from primary untreated neuroblastoma tumour samples
  • organism-icon Homo sapiens
  • sample-icon 20 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [transcript (gene) version (huex10st)

Description

The miR-17-92 microRNA cluster is often activated in cancer cells, but the identity of its targets remains largely elusive. Here we examined the effects of activation of the entire miR-17-92 cluster on global protein expression in neuroblastoma cells.

Publication Title

The miR-17-92 microRNA cluster regulates multiple components of the TGF-β pathway in neuroblastoma.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE22809
Expression data from lack of DNA topoisomerase I, DNA topoisomerase II and complete lack of both topoisomerases
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Yeast Genome 2.0 Array (yeast2)

Description

To investigate the role of DNA topoisomerases in transcription, we have studied global gene expression in Saccharomyces cerevisiae cells deficient for topoisomerases I and II and performed single-gene analyses to support our findings. The genome-wide studies show a general transcriptional down-regulation upon lack of the enzymes, which correlates with gene activity but not gene length. Furthermore, our data reveal a distinct subclass of genes with a strong requirement for topoisomerases. These genes are characterized by high transcriptional plasticity, chromatin regulation, TATA box presence, and enrichment of a nucleosome at a critical position in the promoter region, in line with a repressible/inducible mode of regulation. Single-gene studies with a range of genes belonging to this group demonstrate that topoisomerases play an important role during activation of these genes. Subsequent in-depth analysis of the inducible PHO5 gene reveals that topoisomerases are essential for binding of the Pho4p transcription factor to the PHO5 promoter, which is required for promoter nucleosome removal during activation. In contrast, topoisomerases are dispensable for constitutive transcription initiation and elongation of PHO5, as well as the nuclear entrance of Pho4p. Finally, we provide evidence that topoisomerases are required to maintain the PHO5 promoter in a superhelical state, which is competent for proper activation. In conclusion, our results reveal a hitherto unknown function of topoisomerases during transcriptional activation of genes with a repressible/inducible mode of regulation

Publication Title

DNA Topoisomerases maintain promoters in a state competent for transcriptional activation in Saccharomyces cerevisiae.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE5509
Expression data from Rat liver 48 hours after treated with different toxic compounds.
  • organism-icon Rattus norvegicus
  • sample-icon 39 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

Rat has been treated with different compounds with the purpose of investigating toxicological mechanisms. But toxic and non-toxic compounds has been administered. 3 toxic (ANIT, DMN, NMF) 3 non-tox (Caerulein, dinitrophenol(DNP), Rosiglitazone) in 5-plicates (30 arrays in all) and 9 untreated (control), 39 samples in all.

Publication Title

Integration of clinical chemistry, expression, and metabolite data leads to better toxicological class separation.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE29815
Drosophila Staged follicles
  • organism-icon Drosophila melanogaster
  • sample-icon 22 Downloadable Samples
  • Technology Badge Icon Affymetrix Drosophila Genome 2.0 Array (drosophila2)

Description

Gene expression analysis of yw follicles at S9/10a, S10B, S12, and S14; Gene expression analysis of pxt mutant follicles (f01000 and EY03052) at S10B, S12, S14

Publication Title

Drosophila eggshell production: identification of new genes and coordination by Pxt.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon SRP046752
RNA-Sequencing of lean, intermediate, and obese pigs
  • organism-icon Sus scrofa
  • sample-icon 31 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

We sequenced mRNA from subcuteneous adipose tissue of 36 pigs (12 Low, 12 Mean and 12 High) to investigate expression profiling of obesity (porcine model) Overall design: Examination of mRNA levels in different obese states in a porcine model for human obesity

Publication Title

An integrative systems genetics approach reveals potential causal genes and pathways related to obesity.

Sample Metadata Fields

Sex, Specimen part, Subject

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact