refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 461 results
Sort by

Filters

Technology

Platform

accession-icon GSE64385
Immune and HCT116 RNA mixtures
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

These experiments were designed as a benchmark tool for deconvolution methods. 5 immune cell populations were sorted from 3 healthy donors' peripheral bloods. Peripheral Blood Mononuclear Cells (PBCMs) and PolymorphoNuclear Cells (PMN) were separated using gradient centrifugation. T cells (DAPI-/CD3+/CD14-/CD19-/CD56-), monocytes (DAPI-/CD3-/CD14+/CD19-/CD56-), B cells (DAPI-/CD3-/CD14-/CD19+/CD56-) and NK cells (DAPI-/CD3-/CD14-/CD19-/CD56+) were FACS-sorted from PBMCs and neutrophils (DAPI-/CD66b+/CD19-/CD3-/CD56-/CD14-) were sorted from PMNs. RNA was extracted from the purified cell population, as well as from the HCT116 colon cancer cell line. RNAs from pure populations were then mixed in various proportions.

Publication Title

Estimating the population abundance of tissue-infiltrating immune and stromal cell populations using gene expression.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE5764
Analysis of microdissected invasive lobular and ductal breast carcinomas in relation to normal ductal and lobular cells
  • organism-icon Homo sapiens
  • sample-icon 29 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The aim of our study was to identify gene expression profiles of ductal and lobular carcinomas in relation to normal ductal and lobular cells. We examined ten mastectomy specimens from postmenopausal breast cancer patients. Ductal and lobular tumor and normal cells were microdissected from cryosections. Fifty nanograms of total RNA were amplified and labeled by PCR and in vitro transcription. GCOS pairwise comparison algorithm and rank products have identified multiple genes that are differentially expressed in comparisons between ductal and lobular tumor and normal cell types. The results suggest that these genes are involved in epithelial-mesenchymal transition, TGFbeta and Wnt signaling. These changes are present in both tumor types but appear to be more prominent in lobular carcinomas.

Publication Title

Novel markers for differentiation of lobular and ductal invasive breast carcinomas by laser microdissection and microarray analysis.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE43254
Transcriptomic Analysis Comparing Tumor-Associated Neutrophils with Granulocytic Myeloid-Derived Suppressor Cells and Normal Neutrophils
  • organism-icon Mus musculus
  • sample-icon 15 Downloadable Samples
  • Technology Badge IconIllumina MouseRef-8 v2.0 expression beadchip

Description

The role of myeloid cells in supporting cancer growth is well established. Most work has focused on myeloid-derived suppressor cells (MDSC) that accumulate in tumor-bearing animals, but tumor-associated neutrophils (TAN) are also known to be capable of augmenting tumor growth. However, little is known about their evolution, phenotype, and relationship to naive neutrophils (NN) and to the granulocytic fraction of MDSC (G-MDSC). In the current study, a transcriptomics approach was used in mice to compare these cell types. Our data show that the three populations of neutrophils are significantly different in their mRNA profiles with NN and G-MDSC being more closely related to each other than to TAN. Structural genes and genes related to cell-cytotoxicity (i.e. respiratory burst) were significantly down-regulated in TAN. In contrast, many immune-related genes and pathways, including genes related to the antigen presenting complex (e.g. all six MHC-II complex genes), and cytokines (e.g. TNF-a, IL-1-a/b), were up-regulated in G-MDSC, and further up-regulated in TAN. Thirteen of the 25 chemokines tested were markedly up-regulated in TAN compared to NN, including striking up-regulation of chemoattractants for T/B-cells, neutrophils and macrophages. This study characterizes different populations of neutrophils related to cancer, pointing out the major differences between TAN and the other neutrophil populations.

Publication Title

Transcriptomic analysis comparing tumor-associated neutrophils with granulocytic myeloid-derived suppressor cells and normal neutrophils.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP110507
4sU-seq of HFF exposed to salt and heat stress
  • organism-icon Homo sapiens
  • sample-icon 48 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

Primary human foreskin fibroblasts (HFF) were exposed to either salt stress (80mM KCl) or heat stress (44ºC). Newly transcribed RNA was labelled by adding 500µM 4-thiouridine (4sU) to the cell culture media for 1h. Total cellular RNA was isolated using Trizol. Newly transcribed RNA was purified following the protocol described in Raedle et al. JoVE 2013. Overall design: Newly transcribed RNA was labelled in one hour intervals during either salt or heat stress (prior to stress, 0-1h or 1-2h). All 4sU-RNA samples were sent for sequencing. Two independent biological replicates were analysed.

Publication Title

HSV-1-induced disruption of transcription termination resembles a cellular stress response but selectively increases chromatin accessibility downstream of genes.

Sample Metadata Fields

Specimen part, Subject, Time

View Samples
accession-icon SRP148097
Quiescent glioblastoma cells shift to an epithelial-mesenchymal transition-like gene program
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Quiescent stem cells of glioblastoma (GBM), a malignant primary brain tumor, are potential sources for recurrence after therapy. However, the gene expression program underlying the physiology of GBM stem cells remains unclear. We have isolated quiescent GBM cells by engineering them with a knock-in H2B-GFP proliferation reporter and expanding them in a 3D tumor organoid model that mimics tumor heterogeneity. H2B-GFP label retaining quiescent cells were subjected to stem cell assays and RNA-Seq gene expression analysis. While quiescent GBM cells were similar in clonal culture assays to their proliferative counterparts, they displayed higher therapy resistance. Interestingly, quiescent GBM cells upregulated epithelial-mesenchymal transition (EMT) genes and genes of extracellular matrix components. Our findings connect quiescent GBM cells with an EMT-like shift, possibly explaining how GBM stem cells achieve high therapy resistance and invasiveness, and suggest new targets to abrogate GBM. Overall design: Glioblastoma cancer cells in 3D organoid culture were pulsed for 2 weeks with H2B-GFP, then chased either 2 or 4 weeks. Label-retaining GFP-high cells (quiescent) were separated from bulk population, and both populations were analyzed by RNA-Seq.

Publication Title

Gene signatures of quiescent glioblastoma cells reveal mesenchymal shift and interactions with niche microenvironment.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE64337
Inhibition of de novo Palmitate Synthesis by Fatty Acid Synthase Induces Apoptosis in Tumor Cells by Remodeling Cell Membranes, Inhibiting Signaling Pathways, and Reprogramming Gene Expression
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

TVB-3166, an orally available, reversible, potent, and selective FASN inhibitors, was used to investigate FASN as a cancer therapeutic target. FASN inhibition with TVB-3166 induces apoptosis, inhibits anchorage-independent cell growth under lipid-rich conditions, and inhibits in vivo xenograft tumor growth.

Publication Title

Inhibition of de novo Palmitate Synthesis by Fatty Acid Synthase Induces Apoptosis in Tumor Cells by Remodeling Cell Membranes, Inhibiting Signaling Pathways, and Reprogramming Gene Expression.

Sample Metadata Fields

Treatment

View Samples
accession-icon SRP044766
Wide-spread disruption of transcription termination in HSV-1 infection: Next generation sequencing of total and newly transcribed (4sU-RNA) RNA
  • organism-icon Homo sapiens
  • sample-icon 27 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2500

Description

Primary human foreskin fibroblasts (HFF) were infected with wild-type simplex virus 1 (HSV-1) strain 17 at a multiplicity of infection (MOI) of 10. Newly transcribed RNA was labelled by adding 500µM 4-thiouridine (4sU) to the cell culture media for 1h. Total cellular RNA was isolated using Trizol. Newly transcribed RNA was purified following the protocol described in Raedle et al. JoVE 2013. Overall design: Newly transcribed RNA was labelled in one hour intervals during the first eight hours of HSV-1 infection. All nine 4sU-RNA samples as well as total cellular RNA of every second hour of infection were sent for sequencing. Two independent biological replicates were analysed.

Publication Title

Prediction of Poly(A) Sites by Poly(A) Read Mapping.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP064187
Redifferentiation of expanded human islet ß cells by inhibition of ARX
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2500

Description

We applied RNA-seq analysis to human islet cells, received from 3 independent donors, treated with either redifferentiation cocktail + ARX shRNA, or redifferentiation cocktail + control shRNA or left untreated. Overall design: Examination of the effect of ARX inhibition on redifferentiation of ß-cell-derived (BCD) cells

Publication Title

Redifferentiation of expanded human islet β cells by inhibition of ARX.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE21105
Expression profiling of p53 wildtype inducible DLD-1 cells
  • organism-icon Homo sapiens
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This is an initial experiment which was performed in order to identify novel transcriptional targets of the tumor suppressor p53

Publication Title

p53 activates the PANK1/miRNA-107 gene leading to downregulation of CDK6 and p130 cell cycle proteins.

Sample Metadata Fields

Specimen part, Cell line, Treatment

View Samples
accession-icon GSE10097
Transcript profiling of oestrogen treatment of primary human neuronal and glial cell cultures
  • organism-icon Homo sapiens
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

The purpose of this experiment was to identify oestrogen regulated genes in human primary cell cultures of neuronal and glial cells modelling the developing human nervous system. We were especially interested in genes involved in proliferation, differentiation and migration of neuronal cells and genes involved in or linked to neurodegenerative diseases. We have therefore assessed gene expression changes, using Affymetrix GeneChips (HG-U133A), of oestrogen treated human neuronal/ glial cell cultures. We continued with 14 selected genes and confirmed the gene expression changes, by relative quantitative real time PCR, of 6 genes (p< 0.05) important in neuronal development, three of which also are suggested to have links to neurodegenerative diseases.

Publication Title

Transcriptional analysis of estrogen effects in human embryonic neurons and glial cells.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact