refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 33 results
Sort by

Filters

Technology

Platform

accession-icon GSE16879
Mucosal expression profiling in patients with inflammatory bowel disease before and after first infliximab treatment
  • organism-icon Homo sapiens
  • sample-icon 132 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

We used microarrays to identify mucosal gene signatures predictive of response to infliximab (IFX) in patients with inflammatory bowel disease (IBD) and to gain more insight into the pathogenesis of IBD.

Publication Title

Mucosal gene expression of antimicrobial peptides in inflammatory bowel disease before and after first infliximab treatment.

Sample Metadata Fields

Specimen part, Disease

View Samples
accession-icon GSE73424
Colonic gene expression data of TIMP1 knock out colitis mice
  • organism-icon Mus musculus
  • sample-icon 37 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Increased levels of tissue inhibitor of metalloproteinase-1 (TIMP-1) have been detected in fibrotic strictures in Crohns disease. In a murine model of chronic inflammation, fibrosis was associated with an increase in TIMP-1 and inhibition of matrix metalloproteinase (MMP)-mediated degradation. We investigated the effect of TIMP-1 deficiency on the colonic gene expression in acute and chronic murine models of colitis, using whole genome gene expression arrays.

Publication Title

Genetic Deletion of Tissue Inhibitor of Metalloproteinase-1/TIMP-1 Alters Inflammation and Attenuates Fibrosis in Dextran Sodium Sulphate-induced Murine Models of Colitis.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE42768
Colonic gene expression data of acute and chronic dextran sodium sulphate (DSS) colitis mice
  • organism-icon Mus musculus
  • sample-icon 30 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

The lack of suitable animal models reflecting chronically relapsing inflammation and tissue remodeling have hindered fibrosis research in inflammatory bowel diseases (IBD). This study investigated changes in connective tissue in a chronic murine model using different cycles of dextran sodium sulphate (DSS) to mimic the relapsing nature of the disease.

Publication Title

Unique gene expression and MR T2 relaxometry patterns define chronic murine dextran sodium sulphate colitis as a model for connective tissue changes in human Crohn's disease.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE14580
Mucosal gene signatures to predict response to infliximab in patients with ulcerative colitis
  • organism-icon Homo sapiens
  • sample-icon 30 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Infliximab, an anti-TNF-alpha monoclonal antibody, is an effective treatment for ulcerative colitis (UC) with over 60% of patients responding to treatment and up to 30% reaching remission. The mechanism of resistance to anti-TNF-alpha is unknown. This study used colonic mucosal gene expression to provide a predictive response signature for infliximab treatment in UC.

Publication Title

Mucosal gene signatures to predict response to infliximab in patients with ulcerative colitis.

Sample Metadata Fields

Specimen part, Disease

View Samples
accession-icon GSE12251
A Predictive Response Signature to Infliximab Treatment in Ulcerative Colitis
  • organism-icon Homo sapiens
  • sample-icon 23 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Infliximab, an anti-TNFa monoclonal antibody, is an effective treatment for ulcerative colitis (UC) inducing over 60% of patients to respond to treatment. Consequently, about 40% of patients do not respond. This study analyzed mucosal gene expression from patients enrolled in ACT1 to provide a predictive response signature for infliximab treatment.

Publication Title

Mucosal gene signatures to predict response to infliximab in patients with ulcerative colitis.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE24155
AIM2-responsive genes in colorectal tumor cells
  • organism-icon Homo sapiens
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Absent in Melanoma 2 (AIM2) is a member of the HIN-200 family of hematopoietic, IFN-inducible nuclear proteins associated with infection defense and tumor pathology. Recently, AIM2 was found to act as a DNA sensor in innate immunity. In addition, a high frequency of AIM2-alterations was observed in microsatellite unstable tumors. To elucidate AIM2 function in colorectal tumors, we here addressed AIM2-responsive genes by microarray. Among genes up-regulated by AIM2, there were a number of interferon-stimulated genes (ISGs: IFIT1, IFIT2, IFIT3, IFI6, IRF7, ISG15, HLA-DRA, HLA-DRB, TLR3 and CIITA) as well as genes involved in intercellular adhesion and matrix remodeling. Expression of ISGs correlated with expression of AIM2 in ten different IFN- treated colorectal cancer cell lines. Moreover, knock-down of AIM2 resulted in reduced expression of HLA-DRA, HLA-DRB, and CIITA in IFN- treated cells. IFN- independent induction of HLA-DR genes and their encoded proteins was also demonstrated upon transient induction of AIM2. STAT-signaling was not involved in IFN- independent induction of ISGs, arguing against participation of cytokines released in an autocrine manner. Our data indicate that AIM2 mediates IFN- dependent and independent induction of several Interferon stimulated genes (ISGs) including genes encoding the MHC II antigens HLA-DR and .

Publication Title

Absent in Melanoma 2 (AIM2) is an important mediator of interferon-dependent and -independent HLA-DRA and HLA-DRB gene expression in colorectal cancers.

Sample Metadata Fields

Cell line

View Samples
accession-icon SRP049977
Sus scrofa Transcriptome or Gene expression
  • organism-icon Sus scrofa
  • sample-icon 1 Downloadable Sample
  • Technology Badge IconIllumina HiSeq 2000

Description

So far, the majority of research on piRNAs was carried out in popular model organisms such as fruit fly and mouse, which however do not closely reflect human PIWI biology. Thus, we high-throughput sequenced and computationally analyzed piRNAs expressed in the adult testis of the pig owing to its full set of mammalian Piwi paralogs, availability for repeat experiments and the existence of elementary data from previous studies on the porcine PIWI/piRNA system. We provide an exhaustive characterization of porcine piRNAs and genomic piRNA clusters. In addition, we reveal that a considerable proportion of piRNAs matches protein coding genes, exhibiting characteristics that point to a biogenesis within the post-transcriptional silencing mechanism of the PIWI/piRNA pathway, commonly referred to as ping pong cycle. We further show that the majority of identified piRNA clusters spans exonic sequences of protein-coding genes or pseudogenes, which indicates the existence of different mechanisms for the generation of piRNAs directed against mRNA. Our data provides evidence that spliced mRNAs, derived from such loci, are not only targeted by piRNAs but are also subject to ping pong cycle processing. Finally, we demonstrate that homologous genes are targeted by piRNAs in pig, mouse and human. Altogether, this strongly suggests a role for mammalian piRNA clusters in gene regulation alongside of TE repression.

Publication Title

piRNAs from Pig Testis Provide Evidence for a Conserved Role of the Piwi Pathway in Post-Transcriptional Gene Regulation in Mammals.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE80767
Transcriptional response to mouse and human AIM2-like receptor activation
  • organism-icon Mus musculus, Homo sapiens
  • sample-icon 18 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip, Illumina MouseWG-6 v2.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

The AIM2-like Receptors Are Dispensable for the Interferon Response to Intracellular DNA.

Sample Metadata Fields

Treatment, Time

View Samples
accession-icon GSE80766
Transcriptional response to intracellular DNA in cells lacking AIM2-like receptors
  • organism-icon Mus musculus
  • sample-icon 18 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

Analysis of ALR-deficient cells indicates that ALRs are not required for the IFN response to intracellular DNA. To explore whether AIM2-like receptors activated another innate signaling pathway upon

Publication Title

The AIM2-like Receptors Are Dispensable for the Interferon Response to Intracellular DNA.

Sample Metadata Fields

Treatment, Time

View Samples
accession-icon GSE14816
Immune Response of Immature Dendritic Cells after Infection with Human Cytomegalovirus Strain TB40E
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Microarray analysis and quantitative real-time PCR revealed that TB40E infection of DCs led to changes of the gene expression pattern. A variety of pro-inflammatory cytokines and chemokines (CXCL10, CXCL11, CCL5), TLR3 and genes whose products function downstream of the TLR3 signalling pathway (e.g. IFN-, IFN-) were significantly upregulated.

Publication Title

Toll-like receptor 3 has no critical role during early immune response of human monocyte-derived dendritic cells after infection with the human cytomegalovirus strain TB40E.

Sample Metadata Fields

Specimen part

View Samples

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact