Epigenetic mechanisms contribute to deregulated gene expression of hematopoietic progenitors in Myelodysplastic Syndromes (MDS). Hypomethylating agents are able to improve peripheral cytopenias in MDS patients. To identify critical gene expression changes induced by hypomethylating agents, we analyzed gene expression profiling (GEP) of myelodysplastic and normal CD34+ hematopoietic stem cells treated in vitro with or without decitabine. Four MDS and two untreated early stage Hodgkins lymphomas were analyzed for GEP. Mock treated CD34+ stem cells segregate according to diagnosis and karyotype. After decitabine treatment, gene expression changes were more consistent on MDS CD34+ cells with abnormal kayotype. Comparing decitabine-induced genes with those found down-regulated in mock-treated MDS cells, we identified a list of candidate tumor suppressor genes in MDS. By real-time RT-PCR we confirmed expression changes for three selected genes CD9, CXCR4 and GATA2 in 12 MDS patients and 4 controls. CD9 was widely repressed in most MDS CD34+ cell samples, although similar levels of methylation were found in both normal and MDS total bone marrows. CXCR4 promoter methylation was absent in total bone marrows from 36 MDS patients. In conclusion, changes in gene expression changes induced by hypomethylating treatment are more pronounced in CD34+ cells from abnormal karyotype.
Gene expression profiling of myelodysplastic CD34+ hematopoietic stem cells treated in vitro with decitabine.
Sex, Age, Specimen part, Disease
View SamplesEpigenetic changes play a role in the pathogenesis of myeloid malignancies and hypomethylating agents have shown efficacy in these diseases. We studied the apoptotic effect, the genome-wide methylation and gene expression profiles in HL60 cells following decitabine treatment, using micro-array technologies. Decitabine treatment resulted in a decrease in global DNA methylation, corresponding to 4876 probeset IDs with significantly reduced methylation levels, while expression of 2583 IDs was induced. The integrated analysis identified 160 genes demethylated and upregulated by decitabine, mainly including development and differentiation pathways genes. Genes target of polycomb group protein regulation were overrepresented in this group. Apoptosis was induced by decitabine and apoptosis-specific PCR arrays more precisely indicated decitabine-induced upregulation of 13 apoptosis-related genes, in particular Dap-kinase 1 and Bcl2L10. Correspondingly, in primary patient samples, BCL2L10 was hypermethylated in 45% of AML, 43% of therapy-related myeloid neoplasms, 12% of MDS and in none of the controls.
Analysis of genome-wide methylation and gene expression induced by 5-aza-2'-deoxycytidine identifies BCL2L10 as a frequent methylation target in acute myeloid leukemia.
Specimen part
View SamplesThree HL cell lines (HD-MyZ, L-540 and HDLM-2) were used to investigate the effects of perifosine and sorafenib using in vitro assays analyzing cell growth, cell cycle distribution, gene expression profiling (GEP), and apoptosis. Western blotting (WB) experiments were performed to determine whether the two-drug combination affected MAPK and PI3K/AKT pathways as well as apoptosis. Additionally, the antitumor efficacy and mechanism of action of perifosine/sorafenib combination were investigated in vivo in nonobese diabetic/severe combined immunodeficient (NOD/SCID) mice using tumor growth rates and survival as endpoints. RESULTS: While perifosine and sorafenib as single agents exerted a limited activity against HL cells, exposure of HD-MyZ and L-540 cell lines, but not HDLM-2 cells, to perifosine/sorafenib combination resulted in synergistic cell growth inhibition (40% to 80%) and cell cycle arrest. Upon perifosine/sorafenib exposure, L-540 cell line showed significant levels of apoptosis (up to 70%, P .0001) associated with severe mitochondrial dysfunction (cytochrome c, apoptosis-inducing factor release and marked conformational change of Bax accompanied by membrane translocation). Apoptosis induced by perifosine/sorafenib combination did not result in processing of caspase-8, -9, -3, or cleavage of PARP, and was not reversed by the pan-caspase inhibitor Z-VADfmk, supporting a caspase-independent mechanism of cell death. In responsive cell lines, WB analysis showed that antiproliferative and pro-apototic events were associated with dephosphorylation of MAPK and PI3K/Akt pathways. GEP analysis of HD-MyZ and L-540 cell lines, but not HDLM-2 cells indicated that perifosine/sorafenib treatment induced upregulation of genes involved in amino acid metabolism and downregulation of genes regulating cell cycle, DNA replication and cell death. In addition, in responsive cell lines, perifosine/sorafenib combination strikingly induced the expression of tribbles homologues 3 (TRIB3) both in vitro and in vivo. Silencing of TRIB3 prevented cell growth reduction induced by perifosine/sorafenib treatment. In vivo, the combined perifosine/sorafenib treatment significantly increased the median survival of NOD/SCID mice xenografted with HD-MyZ cell line as compared to controls (81 vs 45 days, P .0001) as well as mice receiving perifosine alone (49 days, P .03) or sorafenib alone (54 days, P .007). In mice bearing subcutaneous nodules generated by HD-MyZ and L-540 cell lines but not HDLM-2 cell line, perifosine/sorafenib treatment induced significantly increased levels of apoptosis (2- to 2.5-fold, P .0001) and necrosis (2- to 8-fold, P .0001), as compared to controls or treatment with single agents. In addition, perifosine/sorafenib treatment had no effect on HDLM-2 nodules, but significantly reduced L-540 nodules with 50% tumor growth inhibition, compared to controls. CONCLUSIONS: Perifosine/sorafenib combination resulted in strong anti-HL activity both in vitro and in vivo. These results warrant clinical evaluation of perifosine/sorafenib combined-treatment in HL patients.
Perifosine and sorafenib combination induces mitochondrial cell death and antitumor effects in NOD/SCID mice with Hodgkin lymphoma cell line xenografts.
Specimen part, Cell line, Treatment
View SamplesThree HL cell lines (HD-MyZ, L-540 and HDLM-2) were used to investigate the effects of perifosine and sorafenib using in vitro assays analyzing cell growth, cell cycle distribution, gene expression profiling (GEP), and apoptosis. Western blotting (WB) experiments were performed to determine whether the two-drug combination affected MAPK and PI3K/AKT pathways as well as apoptosis. Additionally, the antitumor efficacy and mechanism of action of perifosine/sorafenib combination were investigated in vivo in nonobese diabetic/severe combined immunodeficient (NOD/SCID) mice using tumor growth rates and survival as endpoints. RESULTS: While perifosine and sorafenib as single agents exerted a limited activity against HL cells, exposure of HD-MyZ and L-540 cell lines, but not HDLM-2 cells, to perifosine/sorafenib combination resulted in synergistic cell growth inhibition (40% to 80%) and cell cycle arrest. Upon perifosine/sorafenib exposure, L-540 cell line showed significant levels of apoptosis (up to 70%, P .0001) associated with severe mitochondrial dysfunction (cytochrome c, apoptosis-inducing factor release and marked conformational change of Bax accompanied by membrane translocation). Apoptosis induced by perifosine/sorafenib combination did not result in processing of caspase-8, -9, -3, or cleavage of PARP, and was not reversed by the pan-caspase inhibitor Z-VADfmk, supporting a caspase-independent mechanism of cell death. In responsive cell lines, WB analysis showed that antiproliferative and pro-apototic events were associated with dephosphorylation of MAPK and PI3K/Akt pathways. GEP analysis of HD-MyZ and L-540 cell lines, but not HDLM-2 cells indicated that perifosine/sorafenib treatment induced upregulation of genes involved in amino acid metabolism and downregulation of genes regulating cell cycle, DNA replication and cell death. In addition, in responsive cell lines, perifosine/sorafenib combination strikingly induced the expression of tribbles homologues 3 (TRIB3) both in vitro and in vivo. Silencing of TRIB3 prevented cell growth reduction induced by perifosine/sorafenib treatment. In vivo, the combined perifosine/sorafenib treatment significantly increased the median survival of NOD/SCID mice xenografted with HD-MyZ cell line as compared to controls (81 vs 45 days, P .0001) as well as mice receiving perifosine alone (49 days, P .03) or sorafenib alone (54 days, P .007). In mice bearing subcutaneous nodules generated by HD-MyZ and L-540 cell lines but not HDLM-2 cell line, perifosine/sorafenib treatment induced significantly increased levels of apoptosis (2- to 2.5-fold, P .0001) and necrosis (2- to 8-fold, P .0001), as compared to controls or treatment with single agents. In addition, perifosine/sorafenib treatment had no effect on HDLM-2 nodules, but significantly reduced L-540 nodules with 50% tumor growth inhibition, compared to controls. CONCLUSIONS: Perifosine/sorafenib combination resulted in strong anti-HL activity both in vitro and in vivo. These results warrant clinical evaluation of perifosine/sorafenib combined-treatment in HL patients.
Perifosine and sorafenib combination induces mitochondrial cell death and antitumor effects in NOD/SCID mice with Hodgkin lymphoma cell line xenografts.
Specimen part, Cell line, Treatment
View SamplesThree HL cell lines (HD-MyZ, L-540 and HDLM-2) were used to investigate the effects of perifosine and sorafenib using in vitro assays analyzing cell growth, cell cycle distribution, gene expression profiling (GEP), and apoptosis. Western blotting (WB) experiments were performed to determine whether the two-drug combination affected MAPK and PI3K/AKT pathways as well as apoptosis. Additionally, the antitumor efficacy and mechanism of action of perifosine/sorafenib combination were investigated in vivo in nonobese diabetic/severe combined immunodeficient (NOD/SCID) mice. While perifosine and sorafenib as single agents exerted a limited activity against HL cells, exposure of HD-MyZ and L-540 cell lines, but not HDLM-2 cells, to perifosine/sorafenib combination resulted in synergistic cell growth inhibition (40% to 80%) and cell cycle arrest. Upon perifosine/sorafenib exposure, L-540 cell line showed significant levels of apoptosis (up to 70%, P .0001) associated with severe mitochondrial dysfunction (cytochrome c, apoptosis-inducing factor release and marked conformational change of Bax accompanied by membrane translocation). Apoptosis induced by perifosine/sorafenib combination did not result in processing of caspase-8, -9, -3, or cleavage of PARP, and was not reversed by the pan-caspase inhibitor Z-VADfmk, supporting a caspase-independent mechanism of cell death. In responsive cell lines, WB analysis showed that antiproliferative and pro-apototic events were associated with dephosphorylation of MAPK and PI3K/Akt pathways. GEP analysis of HD-MyZ and L-540 cell lines, but not HDLM-2 cells indicated that perifosine/sorafenib treatment induced upregulation of genes involved in amino acid metabolism and downregulation of genes regulating cell cycle, DNA replication and cell death. In addition, in responsive cell lines, perifosine/sorafenib combination strikingly induced the expression of tribbles homologues 3 (TRIB3) both in vitro and in vivo. Silencing of TRIB3 prevented cell growth reduction induced by perifosine/sorafenib treatment. In vivo, the combined perifosine/sorafenib treatment significantly increased the median survival of NOD/SCID mice xenografted with HD-MyZ cell line as compared to controls (81 vs 45 days, P .0001) as well as mice receiving perifosine alone (49 days, P .03) or sorafenib alone (54 days, P .007). In mice bearing subcutaneous nodules generated by HD-MyZ and L-540 cell lines but not HDLM-2 cell line, perifosine/sorafenib treatment induced significantly increased levels of apoptosis (2- to 2.5-fold, P .0001) and necrosis (2- to 8-fold, P .0001), as compared to controls or treatment with single agents. Perifosine/sorafenib combination resulted in strong anti-HL activity both in vitro and in vivo. These results warrant clinical evaluation of perifosine/sorafenib combined-treatment in HL patients.
Perifosine and sorafenib combination induces mitochondrial cell death and antitumor effects in NOD/SCID mice with Hodgkin lymphoma cell line xenografts.
Specimen part, Cell line, Treatment
View SamplesThis SuperSeries is composed of the SubSeries listed below.
DNA Methylation Predicts the Response of Triple-Negative Breast Cancers to All-Trans Retinoic Acid.
Sex, Specimen part, Disease, Cell line, Treatment
View SamplesWe evaluated the transcriptome changes induced by infection with Salmonella (20 hpi, MOI 100). Overall design: Transcriptmic profiles of HeLa cells infected with Salmonella Typhimurium were generated by deep sequencing, using Illumina HiSeq 2000.
Functional high-throughput screening identifies the miR-15 microRNA family as cellular restriction factors for Salmonella infection.
No sample metadata fields
View SamplesWe identified miRNAs differentially regulated upon Salmonella infection by comparative deep-sequencing analysis of cDNA libraries prepared from the small RNA population (10–29 nt) of HeLa cells infected with Salmonella (20 hpi) and mock-treated cells. Considering that at a MOI of 25 Salmonella is internalized in only 10-15% of the HeLa cells, we separated the fraction of cells which had internalized Salmonella (Salmonella+) from the bystander fraction (Salmonella-) by fluorescence-activated cell sorting (FACS), and extended the analysis of miRNA changes to these samples. Interestingly, we observed that Salmonella infection induces a significant decrease in the expression of all the detected members of the miR-15 family Overall design: miRNA profiles of HeLa cells infected with Salmonella Typhimurium were generated by deep sequencing, using Illumina HiSeq2000.
Functional high-throughput screening identifies the miR-15 microRNA family as cellular restriction factors for Salmonella infection.
No sample metadata fields
View SamplesTo have a global picture of the targets of the miR-15 family, we assessed transcriptome changes, by deep-sequencing, of HeLa cells transfected with 3 members of the miR-15 family (miR-15a, miR-16 or miR-503) or a control miRNA (cel-miR-231). We observed a very extensive overlap between the genes down-regulated by these 3 miRNAs, as expected for miRNAs belonging to the same family. Overall design: transcriptmic profiles of HeLa cells treated miR-15a, miR-16, miR-503 and control-miR were generated by deep sequencing, using Illumina HiSeq2000.
Functional high-throughput screening identifies the miR-15 microRNA family as cellular restriction factors for Salmonella infection.
No sample metadata fields
View SamplesIn the present study 23 participants completed three months of supervised aerobic exercise training of one leg (training period 1) followed by 9 months of rest before 12 of the participants completed a second exercise training period (training period 2) of three months of both legs. Skeletal muscle biopsies have been collected before and after the training periods. We have compared trained leg with untrained leg and studied gene and isoform expression. Additional samples included in this study has been previously submitted (GEO accession number GSE58387 and GSE60590). Overall design: Analyze of transcriptome in skeletal muscle biopsy samples in response to exercise training in 23 participants in total (in addition to data previously submitted GEO accession number GSE58387 and GSE60590). Biopsy is collected from skeletal muscle before and after training period.
The Impact of Endurance Training on Human Skeletal Muscle Memory, Global Isoform Expression and Novel Transcripts.
No sample metadata fields
View Samples