refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 52 results
Sort by

Filters

Technology

Platform

accession-icon GSE9764
Carcinoma Associated Fibroblast Like Differentiation of Human Mesenchymal Stem Cells
  • organism-icon Homo sapiens
  • sample-icon 11 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Carcinoma associated fibroblasts (CAFs) have recently been implicated in important aspects of epithelial solid tumor biology such as neoplastic progression, tumor growth, angiogenesis, and metastasis. However, neither the source of CAFs nor the differences between CAFs and fibroblasts from non-neoplastic tissue have been well defined. In this study we demonstrate that human bone marrow-derived mesenchymal stem cells (hMSCs) exposed to tumor-conditioned medium (TCM) over a prolonged period of time assume a CAF-like myofibroblastic phenotype. More importantly, these cells exhibit functional properties of CAFs including sustained expression of stromal derived factor 1 (SDF-1) and the ability to promote tumor cell growth both in vitro and in an in vivo co-implantation model and expression of myofibroblast markers including -smooth muscle actin and fibroblast surface protein. hMSCs induced to differentiate to a myofibroblast-like phenotype using 5-azacytidine do not promote tumor cells growth as efficiently as hMSCs cultured in tumor-conditioned medium nor do they demonstrate increased SDF-1 expression. Furthermore, gene expression profiling revealed similarities between TCM exposed hMSCs and carcinoma associated fibroblasts. Taken together these data suggest that hMSCs are a source of carcinoma associated fibroblasts and can be used in the modeling of tumor-stroma interactions. To our knowledge this is the first report demonstrating that hMSCs become activated and resemble carcinoma associated myofibroblasts upon prolonged exposure to conditioned medium from MDAMB231 human breast cancer cells.

Publication Title

Carcinoma-associated fibroblast-like differentiation of human mesenchymal stem cells.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE71879
Comparing gene expression profiles of pigmented and amelanotic (MPNST-like) melanomas arising in the genetically engineered BRAF(V600E)-Cdk4(R24C) mouse melanoma model
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

We found that pigmented and amelanotic (MPNST-like) melanomas arise in the genetically engineered BRAF(V600E)-Cdk4(R24C) mouse melanoma model and even in the same animal.

Publication Title

A Preclinical Model of Malignant Peripheral Nerve Sheath Tumor-like Melanoma Is Characterized by Infiltrating Mast Cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE73464
Diagnosis of Kawasaki Disease in children using host RNA expression
  • organism-icon Homo sapiens
  • sample-icon 839 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip, Illumina HumanHT-12 V3.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Diagnosis of Kawasaki Disease Using a Minimal Whole-Blood Gene Expression Signature.

Sample Metadata Fields

Sex

View Samples
accession-icon GSE73461
Diagnosis of Kawasaki Disease in children using host RNA expression [Discovery_Dataset]
  • organism-icon Homo sapiens
  • sample-icon 459 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V3.0 expression beadchip, Illumina HumanHT-12 V4.0 expression beadchip

Description

Genome-wide analysis of transcriptional profiles in children <17 years of age with inflammatory diseases, bacterial or viral infections or with clinical features suggestive of infection.

Publication Title

Diagnosis of Kawasaki Disease Using a Minimal Whole-Blood Gene Expression Signature.

Sample Metadata Fields

Sex

View Samples
accession-icon GSE73463
Diagnosis of Kawasaki Disease in children using host RNA expression [Validation_HT12V4_Dataset]
  • organism-icon Homo sapiens
  • sample-icon 233 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V3.0 expression beadchip, Illumina HumanHT-12 V4.0 expression beadchip

Description

Genome-wide analysis of transcriptional profiles in children <17 years of age with inflammatory diseases, bacterial or viral infections or with clinical features suggestive of infection.

Publication Title

Diagnosis of Kawasaki Disease Using a Minimal Whole-Blood Gene Expression Signature.

Sample Metadata Fields

Sex

View Samples
accession-icon GSE73462
Diagnosis of Kawasaki Disease in children using host RNA expression [Validation_HT12V3_Dataset]
  • organism-icon Homo sapiens
  • sample-icon 147 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V3.0 expression beadchip

Description

Genome-wide analysis of transcriptional profiles in children <17 years of age with inflammatory diseases, bacterial or viral infections or with clinical features suggestive of infection.

Publication Title

Diagnosis of Kawasaki Disease Using a Minimal Whole-Blood Gene Expression Signature.

Sample Metadata Fields

Sex

View Samples
accession-icon GSE41568
A Molecular Profile of Colorectal Cancer to Guide Therapy [PDCCEs]
  • organism-icon Homo sapiens
  • sample-icon 132 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The ability to dissect heterogeneity in colorectal cancer (CRC) is a critical step in developing predictive biomarkers. The goal of this study was to develop a gene expression based molecular subgrouping model, which predicts the likelihood that patients will respond to specific therapies.

Publication Title

Activation of the mTOR Pathway by Oxaliplatin in the Treatment of Colorectal Cancer Liver Metastasis.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP148556
Placental transcriptome in pregnancies complicated by Intrauterine growth restriction (IUGR) and preeclampsia (PE)
  • organism-icon Homo sapiens
  • sample-icon 66 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Purpose: Identify differentially expressed genes in placental samples from early-onset (EO) IUGR, EO-PE, as well as pregnancies complicated by both EO-PE and EO-IUGR Overall design: Methods: Isolated total RNA from human placenta at birth and used it for RNA-sequencing on the Hiseq2000. Sequences were aligned to the human transcriptome (hg19/genome_build37) . Aligned sequences were then used to obtain abundance measurements and conduct differential expression analysis.

Publication Title

Placental microRNAs in pregnancies with early onset intrauterine growth restriction and preeclampsia: potential impact on gene expression and pathophysiology.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE7681
Grape berry expression profiling: developmental series and treatment effects
  • organism-icon Vitis vinifera
  • sample-icon 174 Downloadable Samples
  • Technology Badge Icon Affymetrix Vitis vinifera (Grape) Genome Array (vitisvinifera)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Alignment of time course gene expression data and the classification of developmentally driven genes with hidden Markov models.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE34748
Intragraft Gene Expression in Positive Crossmatch Kidney Allografts: Ongoing Inflammation Mediates Chronic Antibody-Mediated Injury
  • organism-icon Homo sapiens
  • sample-icon 53 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

We studied intragraft gene expression profiles of positive crossmatch (+XM) kidney transplant recipients who develop transplant glomerulopathy (TG) and those who do not. Whole genome microarray analysis and quantitative rt-PCR for 30 transcripts were performed on RNA from protocol renal allograft biopsies in 3 groups: 1) +XM/TG+ biopsies before and after TG; 2) +XM/NoTG; and 3) negative crossmatch kidney transplants (control). Microarray comparisons showed few differentially expressed genes between paired biopsies from +XM/TG+ recipients before and after the diagnosis of TG. Comparing +XM/TG+ and control groups, significantly altered expression was seen for 2,447 genes (18%) and 3,200 genes (24%) at early and late time points, respectively. Canonical pathway analyses of differentially expressed genes showed inflammatory genes associated with innate and adaptive immune responses. Comparing +XM/TG+ and +XM/NoTG groups, 3,718 probe sets were differentially expressed but these were over-represented in only 4 pathways. A classic accommodation phenotype was not identified. Using rt-PCR, the expression of inflammatory genes was significantly increased in +XM/TG+ recipients compared to control biopsies and to +XM/NoTG biopsies. In conclusion, pre-transplant DSA results in a gene expression profile characterized by inflammation and cellular infiltration and the majority of XM+ grafts are exposed to chronic injury.

Publication Title

Intragraft gene expression in positive crossmatch kidney allografts: ongoing inflammation mediates chronic antibody-mediated injury.

Sample Metadata Fields

Specimen part, Time

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact