refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 132 results
Sort by

Filters

Technology

Platform

accession-icon GSE20377
Activation or maintenance of a leukemia stem cell self-renewal pathway in downstream myeloid cells
  • organism-icon Mus musculus
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430A 2.0 Array (mouse430a2)

Description

Activation or maintenance of a leukemia stem cell self-renewal pathway in downstream myeloid cells is an important component of AML development

Publication Title

The Wnt/beta-catenin pathway is required for the development of leukemia stem cells in AML.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE55311
Gene expression response to mitochondrial DNA depletion
  • organism-icon Homo sapiens
  • sample-icon 21 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Mitochondrial defects are associated with a spectrum of human disorders, ranging from rare, inborn errors of metabolism to common, age-associated diseases such as diabetes and neurodegeneration. In lower organisms, genetic retrograde signaling programs have been identified that promote cellular and organism survival in the face of mitochondrial dysfunction. Here, we characterized the transcriptional component of the human mitochondrial retrograde response in an inducible model of mitochondrial dysfunction.

Publication Title

Mitochondrial dysfunction remodels one-carbon metabolism in human cells.

Sample Metadata Fields

Cell line

View Samples
accession-icon SRP082569
Selenoprotein H is an essential regulator of redox homeostasis that cooperates with p53 in development and tumorigenesis
  • organism-icon Danio rerio
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

Selenium, one of a class of selenocysteine-containing proteins (selenoproteins), is an essential micronutrient known for its cancer prevention properties. Selenoprotein H (SepH) is a recently identified nucleolar oxidoreductase whose function is not well understood. Here we report that seph is an essential gene regulating organ development in zebrafish. Metabolite profiling by targeted LCMS/ MS demonstrated that SepH deficiency impairs redox balance by reducing the levels of ascorbate and methionine, while increasing methionine sulfoxide. Transcriptome analysis revealed that SepH deficiency induces an inflammatory response and activates the p53 pathway. Consequently, loss of seph renders larvae susceptible to oxidative stress and DNA damage. Finally, we demonstrate that seph interacts with p53 deficiency in adulthood to accelerate gastrointestinal tumor development. Overall, our findings establish that seph regulates redox homeostasis and suppresses DNA damage. We hypothesize that SepH deficiency may contribute to the increased cancer risk observed in cohorts with low selenium levels. Overall design: 4 WT zebrafish samples and 4 SepH mutant samples

Publication Title

Selenoprotein H is an essential regulator of redox homeostasis that cooperates with p53 in development and tumorigenesis.

Sample Metadata Fields

Subject

View Samples
accession-icon GSE57818
Impact of high-phosphate diet on aortic gene expression
  • organism-icon Mus musculus
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

Uremic media calcification is not only driven by systemic factors such as hyperphosphatemia, but also crticially dependent on vascular smooth muscle cells per se. We hypothesized that the different developmental origins of vscular smooth muscle cells might lead to a heterogeneous susceptibility to develop media calcification.

Publication Title

Heterogeneous susceptibility for uraemic media calcification and concomitant inflammation within the arterial tree.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE36547
Assessment of Ex Vivo Prostaglandin pathway activation in HSCs
  • organism-icon Homo sapiens
  • sample-icon 20 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Transplantation with low numbers of hematopoietic stem cells (HSCs), found in many of the publically accessible cryopreserved umbilical cord blood (UCB) units, leads to delayed time to engraftment, high graft failure rates, and early mortality in many patients. A chemical screen in zebrafish identified the prostaglandin compound, 16,16 dimethyl prostaglandin E2 (dmPGE2), to be a critical regulator of hematopoietic stem cell homeostasis. We hypothesized that an ex vivo modulation with dmPGE2 prior to transplantation would lead to enhanced engraftment by increasing the effective dose of hematopoietic stem cells (HSCs) in cord blood. A phase I trial of reduced-intensity double UCB transplantation was performed to evaluate safety, rates of engraftment and fractional chimerism of dmPGE2 enhanced UCB units. To explore potential causes of the lack of enhanced efficacy in the first cohort, we characterized HSCs to determine whether the prostaglandin pathway was being activated under the ex vivo incubation conditions (4C, 10M dmPGE2, 60 minutes). Incubation conditions were identified (37C, 10M dmPGE2, 120 minutes) that maximize the activation of the prostaglandin pathway by dmPGE2 in human CD34+ cells.

Publication Title

Prostaglandin-modulated umbilical cord blood hematopoietic stem cell transplantation.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE46569
Prostaglandin-modulated umbilical cord blood hematopoietic stem cells
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Umbilical cord blood (UCB) is a valuable source of hematopoietic stem cells (HSCs) for use in allogeneic transplantation. Key advantages of UCB are rapid availability and less stringent requirements for HLA matching. However, UCB contains an inherently limited HSC count, which is associated with delayed time to engraftment, high graft failure rates and early mortality. 16,16 dimethyl prostaglandin E2 (dmPGE2) was previously identified to be a critical regulator of HSC homeostasis and we hypothesized that a brief ex vivo modulation could improve patient outcomes by increasing the effective dose of HSCs.

Publication Title

Prostaglandin-modulated umbilical cord blood hematopoietic stem cell transplantation.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE48541
Prostaglandin dose response on hematopoietic stem cells (25 & 37 deg C)
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Umbilical cord blood (UCB) is a valuable source of hematopoietic stem cells (HSCs) for use in allogeneic transplantation. Key advantages of UCB are rapid availability and less stringent requirements for HLA matching. However, UCB contains an inherently limited HSC count, which is associated with delayed time to engraftment, high graft failure rates and early mortality. 16,16 dimethyl prostaglandin E2 (dmPGE2) was previously identified to be a critical regulator of HSC homeostasis and we hypothesized that a brief ex vivo modulation could improve patient outcomes by increasing the "effective dose" of HSCs.

Publication Title

Prostaglandin-modulated umbilical cord blood hematopoietic stem cell transplantation.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE46714
Prostaglandin duration required to elicit maximum response on hematopoietic stem cells
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Umbilical cord blood (UCB) is a valuable source of hematopoietic stem cells (HSCs) for use in allogeneic transplantation. Key advantages of UCB are rapid availability and less stringent requirements for HLA matching. However, UCB contains an inherently limited HSC count, which is associated with delayed time to engraftment, high graft failure rates and early mortality. 16,16 dimethyl prostaglandin E2 (dmPGE2) was previously identified to be a critical regulator of HSC homeostasis and we hypothesized that a brief ex vivo modulation could improve patient outcomes by increasing the effective dose of HSCs.

Publication Title

Prostaglandin-modulated umbilical cord blood hematopoietic stem cell transplantation.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE46634
Prostaglandin dose response on hematopoietic stem cells (4 deg C)
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Umbilical cord blood (UCB) is a valuable source of hematopoietic stem cells (HSCs) for use in allogeneic transplantation. Key advantages of UCB are rapid availability and less stringent requirements for HLA matching. However, UCB contains an inherently limited HSC count, which is associated with delayed time to engraftment, high graft failure rates and early mortality. 16,16 dimethyl prostaglandin E2 (dmPGE2) was previously identified to be a critical regulator of HSC homeostasis and we hypothesized that a brief ex vivo modulation could improve patient outcomes by increasing the effective dose of HSCs.

Publication Title

Prostaglandin-modulated umbilical cord blood hematopoietic stem cell transplantation.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP189905
Mutations in RABL3 Alter KRAS Prenylation and are Associated with Hereditary Pancreatic Cancer
  • organism-icon Danio rerio
  • sample-icon 7 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer with limited treatment options. Familial predisposition to PDAC occurs in ~10% of cases, but causative genes have not been identified in most families. Uncovering the genetic basis for PDAC susceptibility has immediate prognostic implications for families and can provide mechanistic clues to PDAC pathogenesis. Here, we perform whole-genome sequence analysis in a family with multiple cases of PDAC and identify a germline nonsense mutation in the member of RAS oncogene family-like 3 (RABL3) gene never before directly associated with hereditary cancer. The truncated mutant allele (RABL3_p.S36*) co-segregates with cancer occurrence. To evaluate the contribution of the RABL3 mutant allele in hereditary cancer, we generated rabl3 heterozygous mutant zebrafish and found increased susceptibility to cancer formation in two independent cancer models. Unbiased approaches implicate RABL3 in RAS pathway regulation: the transcriptome of juvenile rabl3 mutants reveals a KRAS upregulation signature, and affinity-purification mass spectrometry for proteins associated with RABL3 or RABL3_p.S36* identifies Rap1 GTPase-GDP Dissociation Stimulator 1 (RAP1GDS1, SmgGDS), a chaperone that regulates prenylation of RAS GTPases. Indeed, we find that RABL3_p.S36* accelerates KRAS prenylation and requires RAS proteins to promote cell proliferation. Furthermore, rabl3 homozygous mutant zebrafish develop severe craniofacial, skeletal, and growth defects consistent with human RASopathies, and these defects are partially rescued with the MEK inhibitor trametinib. Finally, we identify additional germline mutations in RABL3 that impact RAS activity in vivo and have a significant burden in a cohort of patients with developmental disorders, suggesting a role in undiagnosed RASopathies. Moreover, RABL3 is upregulated in multiple human PDAC cell lines and knockdown abrogates proliferation, consistent with a broader role for RABL3 in PDAC. Our studies identify the RABL3 mutation as a new target for genetic testing in cancer families and uncover a novel mechanism for dysregulated RAS activity in development and cancer. Overall design: WT (4 replicates) and homozygous rabl3-TR41 mutant (3 replicates) larval zebrafish at 21 days of age.

Publication Title

Mutations in RABL3 alter KRAS prenylation and are associated with hereditary pancreatic cancer.

Sample Metadata Fields

Age, Specimen part, Cell line, Subject

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact