refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing 7 of 7 results
Sort by

Filters

Technology

Platform

accession-icon SRP043512
Transcriptional response to stress in serum deprived mouse fibroblasts in the presence of MSK1/2 inhibitor.
  • organism-icon Mus musculus
  • sample-icon 14 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

We have employed gene expression profiling in order to identify targets of transcriptional response to stress in resting mouse Swiss 3T3 fibroblasts, either untreated (control) or treated with anisomycin for 3 or 6 hours to induce the p38/MAP kinase pathway. In order determine transcriptional effects dependent on MSK1/2 kinase activity, H89 inhibitor was used in the study. Overall design: Serum starved (72 h 0.2% FCS) mouse 3T3 cells were treated with anisomycin (188.5 nM) for 3 h or 6h (in duplicates) either with or without 15-min pre-treatment with MSK1/2 inhibitor H89 (10 uM). Untreated, serum-starved cells were used as a control. RNA was collected and gene expression profiling using strand-specific RNA-seq was performed.

Publication Title

H3S28 phosphorylation is a hallmark of the transcriptional response to cellular stress.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP039957
Transcriptional response to stress in serum deprived mouse fibroblasts [RNA-Seq]
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

We have employed gene expression profiling in order to identify targets of transcriptional response to stress in resting mouse Swiss 3T3 fibroblasts, either untreated (control) or treated with anisomycin to induce the p38/MAP kinase pathway. Overall design: Serum starved (72 h 0.2% FCS) mouse 3T3 cells were treated with anisomycin (188.5 nM) for 1 h (in duplicates). Untreated, serum-starved cells were used as a control. RNA was collected and gene expression profiling using strand-specific RNA-seq was performed.

Publication Title

H3S28 phosphorylation is a hallmark of the transcriptional response to cellular stress.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE64345
Neuronal changes induced by Varicella Zoster Virus in a rat model of Post Herpetic Neuralgia
  • organism-icon Rattus norvegicus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

Neuronal reactivation of latent varicella zoster virus (VZV) causes debilitating and protracted pain (post herpetic neuralgia: PHN) in a significant fraction of patients.

Publication Title

Neuronal changes induced by Varicella Zoster Virus in a rat model of postherpetic neuralgia.

Sample Metadata Fields

Sex

View Samples
accession-icon GSE16081
Gallus gallus bursal FAE and IFE
  • organism-icon Gallus gallus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Chicken Genome Array (chicken)

Description

A minor population of M cells within the follicle-associated epithelium (FAE) of intestinal Peyers patches (PP) serves as a major portal for entry of exogenous antigens. Characterization of the mammalian M cells, including identification of M-cell surface molecules used for bacterial uptake, has been hampered by their relative rarity. In contrast, M cells constitute virtually all of the FAE cells in the avian bursa of Fabricius. We therefore performed comparative gene expression profiling of chicken and murine FAE to identify commonly expressed genes by M cells in both species. The comprehensive transcriptome analysis revealed that 28 genes were commonly up-regulated in FAE from both species. In situ hybridization (ISH) revealed that annexin A10 (Anxa10) mRNA was scattered in FAE, and co-localized with Ulex europaeus agglutinin-1(UEA-1) that binds to M cells. Whole-mount immunostaining also revealed that cellular prion protein (PrPC) was expressed on the luminal side of the apical plasma membrane of M cells, and co-localized with grycoprotein2 (GP2) that recognizes only M cells in murine PP. Taken together, we found new M-cell-specific molecules by using comprehensive transcriptome analysis. These molecules conserved in M cells from both species might play critical roles in M-cell function and/or differentiation.

Publication Title

New approach for m-cell-specific molecules screening by comprehensive transcriptome analysis.

Sample Metadata Fields

Age, Specimen part, Disease, Disease stage

View Samples
accession-icon SRP183468
Phospho-small RNA-seq reveals circulating, extracellular mRNA/lncRNAs as potential biomarkers in human plasma: Hematopoietic Stem Cell Transplant [HSCT]
  • organism-icon Homo sapiens
  • sample-icon 44 Downloadable Samples
  • Technology Badge Icon

Description

Extracellular RNAs (exRNAs) in blood and other biofluids have attracted great interest as potential biomarkers in liquid biopsy applications, as well as for their potential biological functions. Whereas it is well-established that extracellular microRNAs are present in human blood circulation, the degree to which messenger RNAs (mRNA) and long noncoding RNAs (lncRNA) are represented in plasma is less clear. Here we report that mRNA and lncRNA species are present as small fragments in plasma that are not detected by standard small RNA-seq methods, because they lack 5'-phosphorylation or carry 3'-phosphorylation. We developed a modified sequencing protocol (termed "phospho-sRNA-seq") that incorporates upfront RNA treatment with T4 polynucleotide kinase (which also has 3' phosphatase activity) and compared it to a standard small RNA-seq protocol, using as input both a pool of synthetic RNAs with diverse 5' and 3' end chemistries, as well exRNA isolated from human blood plasma. Using a custom, high-stringency pipeline for data analysis we identified mRNA and lncRNA transcriptome fingerprints in plasma, including multiple tissue-specific gene sets. In a longitudinal study of hematopoietic stem cell transplant (HSCT) patients, we found different sets corresponding to bone marrow- and liver- enriched genes, which tracked with bone marrow recovery or liver injury, providing proof-of-concept validation of this method as a biomarker approach. By accessing a previously unexplored realm of mRNA and lncRNA fragments in blood plasma, phospho-sRNA-seq opens up a new space for plasma transcriptome-based biomarker development in diverse clinical settings. Overall design: ExRNA-seq libraries were prepared from platelet-poor plasma obtained from serial blood draws collected from two individuals undergoing bone marrow transplantation. A total of 11 samples were collected from each individual, starting prior to chemotherapy/ratiation treatment (approximately 7 days pre-HSCT) the day of transplant, and then weekly up to approximately Day 63.

Publication Title

Phospho-RNA-seq: a modified small RNA-seq method that reveals circulating mRNA and lncRNA fragments as potential biomarkers in human plasma.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE27515
Isolation and characterization of a metastatic hybrid cell line generated by ER negative and ER positive breast cancer cells in mouse bone marrow
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The origin and the contribution of breast tumor heterogeneity to its progression are not clear. We investigated the effect of a growing orthotopic tumor formed by an aggressive estrogen receptor (ER)-negative breast cancer cell line on the metastatic potential of a less aggressive ER-positive breast cancer cell line for the elucidation of how the presence of heterogeneous cancer cells might affect each others metastatic behavior.

Publication Title

Isolation and characterization of a metastatic hybrid cell line generated by ER negative and ER positive breast cancer cells in mouse bone marrow.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE33687
An attenuated Lassa vaccine in SIV-infected rhesus macaques does not persist or cause renavirus disease but does elicit protective immunity
  • organism-icon Macaca mulatta
  • sample-icon 25 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Lassa fever (LF) is a rodent-borne viral disease that can be fatal for human beings. In this study, an attenuated Lassa vaccine candidate, ML29, was tested in SIV-infected rhesus macaques for its ability to elicit immune responses without instigating signs of virulent disease. ML29 is a reassortant between Lassa and Mopeia viruses that causes a transient infection in non-human primates and confers sterilizing protection from lethal Lassa viral challenge. However, since the LF endemic area of West Africa also has high HIV seroprevalence, it is important to determine whether vaccination could be safe in the context of AIDS. SIV-infected and uninfected rhesus macaques were vaccinated with the ML29 virus and monitored for classical and non-classical signs of arenavirus disease. Classical disease signs included viremia, rash, weight loss, high liver enzyme levels, and virus invasion of the central nervous system. Non-classical signs derived from profiling the blood transcriptome of virulent and non-virulent arenavirus infections included increased expression of interferon response genes and decreased expression of COX2, IL-1?, coagulation intermediates and nuclear receptors needed for stress signaling. Here it is demonstrated that SIV-infected and uninfected rhesus macaques responded similarly to ML29 vaccination, and that none developed signs of arenavirus disease or persistence. Furthermore, 5 of 5 animals given a heterologous challenge with a lethal dose of LCMV-WE survived without developing disease signs.

Publication Title

An attenuated Lassa vaccine in SIV-infected rhesus macaques does not persist or cause arenavirus disease but does elicit Lassa virus-specific immunity.

Sample Metadata Fields

Specimen part

View Samples
Didn't see a related experiment?

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact