refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 111 results
Sort by

Filters

Technology

Platform

accession-icon GSE68876
Delayed Cardiomyocyte Response to Total Body Particle Radiation Exposure - Identification of Regulatory Gene Network
  • organism-icon Mus musculus
  • sample-icon 30 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Low-dose radiation affects cardiac physiology: gene networks and molecular signaling in cardiomyocytes.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE68874
Delayed Cardiomyocyte Response to Total Body Particle Radiation Exposure Identification of Regulatory Gene Network [iron]
  • organism-icon Mus musculus
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

We examined molecular responses using transcriptome profiling in isolated left ventricular murine cardiomyocytes to 90 cGy, 1 GeV proton (1H) and 15 cGy, 1 GeV/nucleon (n) iron (56Fe) particles 1, 3, 7, 14 and 28 days after exposure. Unsupervised clustering analysis of gene expression segregated samples according to the radiation (IR) response, and time after exposure with 56Fe-IR showing the greatest level of gene modulation. 1H-IR exposures showed little differential transcript modulation. Network analysis categorized the major differentially expressed genes into cell cycle, oxidative responses and transcriptional regulation functional groups. Transcriptional networks identified key nodes regulating expression. Individual transcription factors were inferred to be active at 1, 3, 7, 14 and 28 days after exposure. Validation of the signal transduction network by protein analysis showed that particle IR clearly regulates a long lived signaling mechanism for p38 MAPK signaling and NFATc4 activation. Electrophoresis mobility shift assays supported the role of additional key transcription factors GATA-4, STAT-3 and NF-B as regulators of the response at specific time points. These data suggest that the molecular response to 56Fe-IR is unique and shows long-lasting gene expression in cardiomyocytes, up to 28 days after exposure. Additionally, proteins involved in signal transduction and transcriptional activation via DNA binding play a role in the response to high charge (Z) and energy (E) particles (HZE). Our study may have implications for NASAs efforts to develop heart disease risk estimates for astronauts safety via identification of specific HZE-IR molecular markers and for patients receiving conventional and particle radiotherapy.

Publication Title

Low-dose radiation affects cardiac physiology: gene networks and molecular signaling in cardiomyocytes.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE6119
Exogenous Glucosamine Globally Protects Chondrocytes from the Arthritogenic Effects of IL-1beta
  • organism-icon Rattus norvegicus
  • sample-icon 13 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

Glucosamine proved to be a potent, broad-spectrum inhibitor of IL-1beta. Of the 2,813 genes whose transcription was altered by IL-1beta stimulation (p<0.0001), glucosamine significantly blocked the response in 2,055 (~73%). Glucosamine fully protected the chondrocytes from IL-1-induced expression of inflammatory cytokines, chemokines and growth factors as well as proteins involved in PGE2 and NO synthesis. It also blocked the IL-1-induced expression of matrix specific proteases such as MMPs -3,-9,-10,-12 and ADAMTS-1.

Publication Title

Exogenous glucosamine globally protects chondrocytes from the arthritogenic effects of IL-1beta.

Sample Metadata Fields

Age

View Samples
accession-icon GSE25541
cAMP/PKA signaling balances respiratory activity with mitochondria dependent apoptosis via transcriptional regulation
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Yeast Genome 2.0 Array (yeast2)

Description

This data provides evidence that elevation of cAMP levels has a dramatic effect on the transcriptome of yeast cells, with particular emphasis on mitochondrial function and the promotion of ROS production

Publication Title

cAMP/PKA signaling balances respiratory activity with mitochondria dependent apoptosis via transcriptional regulation.

Sample Metadata Fields

Treatment

View Samples
accession-icon GSE34416
Differential gene expression in mice infected with distinct Toxoplasma gondii strains
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Transcriptome analysis of peritoneal lavage of mice infected with T. gondii

Publication Title

Differential gene expression in mice infected with distinct Toxoplasma strains.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon SRP068057
Transcriptional profiles of human blood dendritic cell (DC) subsets at steady state
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

Innate sensing of viruses by dendritic cells (DCs) is critical for the initiation of anti-viral adaptive immune responses. Virus, however, have evolved to suppress immune activation in infected cells. We now analyze the susceptibility of different populations of dendritic cells to viral infections. We find that circulating human CD1c+ DCs support infection by HIV and influenza virus. Viral infection of CD1c+ DCs is essential for virus-specific CD8+ T cell activation and cytosolic sensing of the virus. In contrast, circulating human CD141+ DCs and pDCs constitutively limit viral fusion. The small GTPase RAB15 mediates this differential viral resistance in DC subsets through selective expression in CD141+ DCs and pDCs. Therefore, dendritic cell sub-populations evolved constitutive resistance mechanisms to mitigate viral infection during induction of antiviral immune response. Overall design: Examination of transcriptional profiles in 4 DC subsets purified from 3 donors using RNASeq

Publication Title

Constitutive resistance to viral infection in human CD141<sup>+</sup> dendritic cells.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE35643
Expression data from human bronchial airway smooth muscle (ASM) cells
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Interleukin (IL)-17 plays an important and protective role in host defence and has been demonstrated to orchestrate airway inflammation by cooperating with and inducing proinflammatory cytokines. Mircoarrays were used to identify immediate-early/ primary response IL-17A-dependent gene transcripts in primary human bronchial ASM cells from mild asthmatic and healthy individuals.

Publication Title

IL-17A mediates a selective gene expression profile in asthmatic human airway smooth muscle cells.

Sample Metadata Fields

Sex, Age, Specimen part, Treatment, Subject, Time

View Samples
accession-icon SRP122943
Whole ovaries RNA sequencing; WT and ghrelin o-acyltransferase (GOAT) knockout mice
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Ghrelin, an orexigenic gut-derived peptide, is gaining increasing attention due to its multifaceted role in a number of physiological functions, including metabolism, cardiovascular health, stress and reproduction. Ghrelin exists in circulation primarily as des-acylated and acylated ghrelin. Des-acyl ghrelin, until recently considered to be an inactive form ghrelin, is now known to have independent physiological functionality. However, the relative contribution of acyl and des-acyl ghrelin to reproductive development and function is currently unknown. Here we used ghrelin-O-acyltransferase (GOAT) knockout (KO) mice that have no measurable levels of endogenous acyl ghrelin and chronically high levels of des-acyl ghrelin, to characterise how the developmental and life-long absence of acyl ghrelin affects ovarian development and reproductive capacity. We have combined ovarian transcriptome analysis using RNA sequencing with measures of ovarian morphometry, as well as with the assessment of markers of reproductive maturity and the capacity to breed. Our data show pronounced specific changes in the ovarian transcriptome in the juvenile GOAT KO ovary, indicative of advanced ovarian development. These changes corresponded with diminished ovarian reserve in the juvenile and adult ovaries of these mice, due to a continuous reduction in the number of small follicle populations. These changes did not affect the timing of puberty onset or reproductive capacity under optimal conditions. These data suggest that an absence of acyl ghrelin does not prevent reproductive success but that appropriate levels of acyl and des-acyl ghrelin may be necessary for optimal ovarian maturation. Overall design: 4 WT and 4 GOAT KO ovaries were used for this analysis

Publication Title

Acylated Ghrelin Supports the Ovarian Transcriptome and Follicles in the Mouse: Implications for Fertility.

Sample Metadata Fields

Age, Specimen part, Cell line, Subject

View Samples
accession-icon GSE2331
Rat mammary expression in individuals and pools
  • organism-icon Rattus norvegicus
  • sample-icon 55 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Expression 230A Array (rae230a)

Description

Rat mammary glands were obtained from individual rats in RXR treated (a) and control (b) conditions (12 rats in each condition). The 24 samples were hybridized individually. Also, in each condition, samples were combined into different pools of 2, pools of 3, pools of 12. Technical replicates were also run.

Publication Title

On the utility of pooling biological samples in microarray experiments.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP128580
PEST-domain-enriched tyrosine phosphatase and glucocorticoids as regulators of mast cell signalling
  • organism-icon Mus musculus
  • sample-icon 16 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 1500

Description

PEST-domain-enriched tyrosine phosphatase (PEP) is a cytoplasmic protein tyrosine phosphatase that regulates immune cell functions, including mast cell functions. Using bone marrow derived mast cells (BMMCs) from PEP+/+ and PEP-/- mice, RNA-seq data showed that dinitrophenol (DNP) - activated PEP-/- BMMCs have misregulated gene expression, with some cytokine/chemokine genes (eg.TNFa, IL13, CSF2) showing reduced gene expression in the dinitrophenol (DNP) - activated PEP-/- BMMCs compared to (DNP)-activated PEP+/+ BMMCs. Also, the ability of the glucocorticoid dexamethasone (Dex) to negatively regulate DNP - induced COX-2 gene expression in PEP-/- BMMCs was inhibited compared to the PEP+/+ BMMCs. Overall design: Biological replicates are sequenced and analyzed. The samples are either wild-type or mutant for PEP and cells were sensitized with Ig-E, activated with Dinitrophenol and glucocorticoid treatment done with Dexamethasone.

Publication Title

Transcriptomic data on the role of PEST-domain-enriched tyrosine phosphatase in the regulation of antigen-mediated activation and antiallergic action of glucocorticoids in mast cells.

Sample Metadata Fields

Sex, Specimen part, Cell line, Treatment, Subject

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact