refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 512 results
Sort by

Filters

Technology

Platform

accession-icon E-MEXP-695
Transcription profiling by array of Arabidopsis closed buds, open pollinated flowers and siliques
  • organism-icon Arabidopsis thaliana
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

Plants were grown in growth chambers at 70% humidity and daily cycles of 16 h light and 8 h darkness at 21 C. Plant material used for the experiments was pooled from 12 plants. Stage I and stage II samples contained complete flower buds (stage I) or flowers (stage II). For stage III samples only siliques without withering flower organs were harvested. About 10% of the tissues for each sample were cleared and analyzed by microscopy to ensure that homogenous developmental stages were harvested. The entire experiment was performed twice providing independent biological replicates.

Publication Title

Transcriptional programs of early reproductive stages in Arabidopsis.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE79287
Correlative Controls of Seeds over Maternal Growth and Senescence in Arabidopsis (expression)
  • organism-icon Arabidopsis thaliana
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

Correlative controls (influences of one organ over another organ) of seeds over maternal growth are one of the most obvious phenotypic expressions of the trade-off between growth and reproduction. However, the underlying molecular mechanisms are largely unknown. Here, we characterize the physiological and molecular effects of correlative inhibition by seeds on Arabidopsis thaliana inflorescences, i.e. global proliferative arrest (GPA) during which all maternal growth ceases upon the production of a given number of seeds. We use laser-assisted microdissection and RNA-seq or Affymetrix GeneChip hybridizations to compare sterile growing, fertile growing and fertile arrested meristems or whole inflorescences. In shoot tissues, we detected the induction of stress- and senescence-related gene expression upon fruit production and GPA, and a drop in chlorophyll levels - suggestive of altered source-sink relationships between vegetative shoot and reproductive tissues. Levels of shoot reactive oxygen species, however, strongly decreased upon GPA - a phenomenon that is associated with bud dormancy in some perennials. Indeed, gene expression changes in arrested apical inflorescences after fruit removal resembled changes observed in axillary buds following release from apical dominance. This suggests that GPA represents a form of bud dormancy, and that dominance is gradually transferred from growing inflorescences to maturing seeds - allowing offspring control over maternal resources, simultaneously restricting offspring number.

Publication Title

Seed Production Affects Maternal Growth and Senescence in Arabidopsis.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon E-MEXP-3137
Transcription profiling by array of Arabidopsis laser microdissected megaspore mother cells
  • organism-icon Arabidopsis thaliana
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

Cell type specific transcriptome analysis from laser microdissected megaspore mother cells (MMC) from Arabidopsis thaliana (L.) Heynh., accession Landsberg erecta.

Publication Title

Transcriptome analysis of the Arabidopsis megaspore mother cell uncovers the importance of RNA helicases for plant germline development.

Sample Metadata Fields

Sex, Specimen part, Subject

View Samples
accession-icon E-MEXP-3138
Transcription profiling by array of nucellus tissue surrounding the megaspore mother cell in Arabidopsis thaliana
  • organism-icon Arabidopsis thaliana
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

Nucellus tissue surrounding the megaspore mother cell in Arabidopsis thaliana (L.) Heynh. , accession Landsberg erecta, isolated by laser assisted microdissection

Publication Title

Transcriptome analysis of the Arabidopsis megaspore mother cell uncovers the importance of RNA helicases for plant germline development.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon E-MEXP-1246
Arabidopsis thaliana embryo sac transcriptome
  • organism-icon Arabidopsis thaliana
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

differential expression between wild-type pistils of Arabidopsis thaliana at late 11 to late 12 floral stages, and similar stage pistils of coatlique mutant which lacks a functional embryo sac

Publication Title

Genetic subtraction profiling identifies genes essential for Arabidopsis reproduction and reveals interaction between the female gametophyte and the maternal sporophyte.

Sample Metadata Fields

Specimen part

View Samples
accession-icon E-MEXP-502
Transcription profiling by array of Arabidopsis mutant for atx1
  • organism-icon Arabidopsis thaliana
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

Analysis of the gene expression profile of the atx1 mutant of Arabidopsis thaliana compared to the wild-type, using apices tissue of in in vitro plants and Affymetrix ATH1 chips.

Publication Title

ARABIDOPSIS TRITHORAX1 dynamically regulates FLOWERING LOCUS C activation via histone 3 lysine 4 trimethylation.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE110811
Distinct Gene Expression Profiles Define Anaplastic Grade in Retinoblastoma
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 2.0 ST Array (hugene20st)

Description

Morbidity and mortality associated with retinoblastoma have decreased drastically in recent decades, in large part due to better prediction of high-risk disease and appropriate treatment stratification. High-risk histopathologic features and severe anaplasia both predict the need for more aggressive treatment; however, not all centers are able to easily assess tumor samples for degree of anaplasia. Instead, identification of genetic signatures able to distinguish among anaplastic grades and thus predict high versus low risk retinoblastoma would facilitate appropriate risk stratification in a wider patient population. A better understanding of genes dysregulated in anaplasia would also yield valuable insights into pathways underlying the development of more severe retinoblastoma. Here, we present the histopathologic and gene expression analysis of 28 retinoblastoma cases using microarray analysis. Tumors of differing anaplastic grade show clear differential gene expression, with significant dysregulation of unique genes and pathways in severe anaplasia. Photoreceptor and nucleoporin expression in particular are identified as highly dysregulated in severe anaplasia and suggest particular cellular processes contributing to the development of increased retinoblastoma severity. A limited set of highly differentially expressed genes are also able to accurately predict severe anaplasia in our dataset. Together, these data contribute to the understanding of the development of anaplasia and facilitate the identification of genetic markers of high-risk retinoblastoma.

Publication Title

Distinct Gene Expression Profiles Define Anaplastic Grade in Retinoblastoma.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE67351
Altering TET dioxygenase levels within physiological range affects DNA methylation dynamics of HEK293 cells
  • organism-icon Homo sapiens
  • sample-icon 17 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Altering TET dioxygenase levels within physiological range affects DNA methylation dynamics of HEK293 cells.

Sample Metadata Fields

Specimen part, Cell line, Treatment

View Samples
accession-icon GSE39186
Effect of TET1 and TET3 overexpression on the transcriptome of HEK293 cells
  • organism-icon Homo sapiens
  • sample-icon 11 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

We compared TET1 and TET3 overexpressing cells to uninduced cells with endogenous levels of the respective transcript to determine global gene expression changes.

Publication Title

Altering TET dioxygenase levels within physiological range affects DNA methylation dynamics of HEK293 cells.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE67348
Effect of the simultaneous knockdown of TET1, TET2 and TET3 on the transcriptome of HEK293 cells
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

We compared TET triple knockdown cells to control cells treated with non-targeting siRNAs to determine global gene expression changes.

Publication Title

Altering TET dioxygenase levels within physiological range affects DNA methylation dynamics of HEK293 cells.

Sample Metadata Fields

Cell line, Treatment

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact