refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 20 results
Sort by

Filters

Technology

Platform

accession-icon SRP078006
Profiling in vivo Bone Lesion and ex vivo Bone-In-Culture Array Samples by Next-Generation Sequencing
  • organism-icon Homo sapiens
  • sample-icon 17 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

Based on RNA-seq, we performed transcriptomic profiling to examine the similarities or differences between BICA (bone-in-culture array) and IVBL (in vivo bone lesion). CIBERSORT analysis reveals that the major local cellular components are comparable between BICA and IVBL, but differ dramatically in orthotopic tumors. Principle component analysis of human RNAs indicated that the transcriptomic profiles of cancer cells in BICA are more closely mimicking IVBL, as compared to cancer cells in 2D and in orthotopic tumors. These results provide transcriptome-wide evidence supporting BICA as a platform to mimic bone microenvironment. Overall design: 2D culture cells, orthotopic tumors, BICA samples and bone lesions, all developed by MCF-7, are subject to NGS and then analyzed.

Publication Title

Bone-in-culture array as a platform to model early-stage bone metastases and discover anti-metastasis therapies.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon SRP132630
Profiling in vivo Bone Lesion (IVBL) and Orthotopic tumors by Next Generation Sequencing
  • organism-icon Homo sapiens
  • sample-icon 15 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

Based on RNA-seq, we performed transcriptomic profiling to examine the differences between Orthotopic and IVBL (in vivo bone lesion). We found Calcium signalling is upregulated in IVBL and correlated to the expression of gap junctions. Overall design: Orthotopic tumors and Bone lesions, all developed by MCF-7, are subject to NGS and then analyzed.

Publication Title

The Osteogenic Niche Is a Calcium Reservoir of Bone Micrometastases and Confers Unexpected Therapeutic Vulnerability.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon SRP158607
ATO treatment on mesenchymal stem cells (MSCs) interacting breast cancer cells
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

Based on next generation RNA-seq, we examed Arsenic trioxide treatment (ATO) effect on MSCs-interacting MCF7 cells in 3D cultures. We found gap junction protein Cx43 is dramatically downregulated after ATO treatment.. Overall design: human breast cancer cell line MCF-7 cells cocultured with mouse MSCs in 3D culture, with or without ATO treatment, are subject to NGS and then analyzed.

Publication Title

The Osteogenic Niche Is a Calcium Reservoir of Bone Micrometastases and Confers Unexpected Therapeutic Vulnerability.

Sample Metadata Fields

Specimen part, Cell line, Treatment, Subject

View Samples
accession-icon GSE620
Gene expression profile analysis of 4-phenylbutyrate treatment of IB3-1 bronchial epithelial cell line
  • organism-icon Homo sapiens
  • sample-icon 22 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Most individuals with cystic fibrosis (CF) carry one or two mutations that result in a maturation defect of the full-length CFTR protein. The deltaF508 mutation results in a mutant protein that is degraded by the proteasome instead of progressing to the apical membrane where it functions as a cyclic AMP-regulated chloride channel. 4 phenylbutyrate modulates heat shock protein expression and promotes trafficking of deltaF508 thus permitting maturation and membrane insertion. The goal of this study was to gain insight into the genetic mechanism of PBA action through a large-scale analysis of gene expression. The Affymetrix genome spanning U133 microarray set was used to compare mRNA expression in untreated IB3-1 cell line cultures with cultures treated with 1mM 4-phenylbuyterate for 12 and 24 hr. IB3-1 deltaF508/W1282X) bronchial epithelial cells were cultured in T75 flasks with gentamicin-free LHC-8 medium. Cells were fed with 10 ml of media every 2 to 3 days. After reaching 80% confluence cells were treated with 1 mM PBA. A T75 flask of confluent IB3-1 cells was rinsed twice with ice cold Hanks buffer then scraped into 3ml of ice cold TRIzol (Gibco BRL) then rinsed with 3 ml ice cold TRIzol and the mRNA was isolated according to the TRIzol protocol. A total of 5 control cultures, 3 cultures with 12 hr BPA application and 3 cultures with 24 hr PBA application were processed

Publication Title

Gene expression profile analysis of 4-phenylbutyrate treatment of IB3-1 bronchial epithelial cell line demonstrates a major influence on heat-shock proteins.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE26241
Expression data from TGFbeta-treated control or aPKC silenced A549 cells
  • organism-icon Homo sapiens
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Aberrant TGFbeta signalling is a hallmark of epithelial derived tumours. Signalling patterns can depend on the membrane trafficking and internalization of the TGFbeta receptors. Protein kinase C (PKC), particularly the atypical PKC isoforms, alter the trafficking of TGFbeta receptors and can alter TGFbeta induced gene expression.

Publication Title

aPKC alters the TGFβ response in NSCLC cells through both Smad-dependent and Smad-independent pathways.

Sample Metadata Fields

Cell line, Treatment, Time

View Samples
accession-icon GSE89156
Gene expression profile (GEP) of miR-34a-5p-overexpressing CD34+ HPCs
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U219 Array (hgu219)

Description

Primary Myelofibrosis (PMF) is a myeloproliferative neoplasm characterized by hyperplastic megakaryopoiesis and myelofibrosis. Through a gene expression profile (GEP) study we recently highlighted the upregulationof miR-34a-5p in PMF versus healthy donor (HD) CD34+ hematopoietic progenitor cells (HPCs). To shed some light into the role of miR-34a-5p in PMF pathogenesis, here we unravelled the effects of the overexpression of miR-34a-5p in HPCs forcing its expression in HPCs.

Publication Title

Role of miR-34a-5p in Hematopoietic Progenitor Cells Proliferation and Fate Decision: Novel Insights into the Pathogenesis of Primary Myelofibrosis.

Sample Metadata Fields

Specimen part, Treatment, Subject

View Samples
accession-icon GSE10162
Transcriptional Adaptation to Clcn5 Knockout in Proximal Tubules of the Mouse Kidney
  • organism-icon Mus musculus
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Dent disease has multiple defects attributed to proximal tubule malfunction including low molecular weight proteinuria, aminoaciduria, phosphaturia and glycosuria. In order to understand the changes in kidney function of the Clc5 transporter gene knockout mouse model of Dent disease, we examined gene expression profiles from proximal tubules of mouse kidneys.

Publication Title

Transcriptional adaptation to Clcn5 knockout in proximal tubules of mouse kidney.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP075923
Next Generation Sequencing of long-term hematopoietic cells (LT-HSCs) with or without mutations in JAK2 and Ezh2
  • organism-icon Mus musculus
  • sample-icon 112 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Comparison of mRNA expression profiles of LT-HSCs with or without mutations in JAK2 and Ezh2 by RNA sequencing. LT-HSC mRNA was extracted from six different transgenic mice (SclCre, SclCre;Ezh2+/-, SclCre;Ezh2-/-, SclCre; JAK2V617F, SclCre; JAK2V617F;Ezh2+/-, SclCre; JAK2V617F;Ezh2-/-) 10 weeks after tamoxifen injection. Our study represents the first detailed analysis of mRNA expression profile of LT-HSC with or without mutations in JAK2 and Ezh2 , with biologic replicates, generated by RNA-seq technology. Our results revealed that mRNA expression profile of LT-HSC with different genotype showed specific gene expression patterns, which allows to do biological comprehensive and quantitative analysis for hematopoiesis. Overall design: LT-HSCs mRNA profiles six different transgenic mice (SclCre, SclCre;Ezh2+/-, SclCre;Ezh2-/-, SclCre; JAK2V617F, SclCre; JAK2V617F;Ezh2+/-, SclCre; JAK2V617F;Ezh2-/-) were generated by deep sequencing.

Publication Title

Loss of Ezh2 synergizes with JAK2-V617F in initiating myeloproliferative neoplasms and promoting myelofibrosis.

Sample Metadata Fields

Sex, Subject

View Samples
accession-icon SRP075921
Next Generation Sequencing of megakaryocyte-erythrocyte progenitor cells (MEPs) with or without mutations in JAK2 and Ezh2
  • organism-icon Mus musculus
  • sample-icon 28 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

Comparison of mRNA expression profiles of MEPs with or without mutations in JAK2 and Ezh2 by RNA sequencing. MEPs mRNA was extracted from six different transgenic mice (SclCre, SclCre;Ezh2+/-, SclCre;Ezh2-/-, SclCre; JAK2V617F, SclCre; JAK2V617F;Ezh2+/-, SclCre; JAK2V617F;Ezh2-/-) 10 weeks after tamoxifen injection. Our study represents the first detailed analysis of mRNA expression profile of MEP with or without mutations in JAK2 and Ezh2 , with biologic replicates, generated by RNA-seq technology. Our results revealed that mRNA expression profile of MEP with different genotype showed specific gene expression patterns, which allows to do biological comprehensive and quantitative analysis for hematopoiesis. Overall design: MEPs mRNA profiles six different transgenic mice (SclCre, SclCre;Ezh2+/-, SclCre;Ezh2-/-, SclCre; JAK2V617F, SclCre; JAK2V617F;Ezh2+/-, SclCre; JAK2V617F;Ezh2-/-) were generated by deep sequencing.

Publication Title

Loss of Ezh2 synergizes with JAK2-V617F in initiating myeloproliferative neoplasms and promoting myelofibrosis.

Sample Metadata Fields

Sex, Subject

View Samples
accession-icon GSE85250
Gene expression profile (GEP) of CD34+ cells overexpressing miR-494-3p
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U219 Array (hgu219)

Description

As recently reported by our group, we performed miRNA and gene expression profiling of CD34+ hematopoietic stem/progenitor cells (HSPCs) isolated from 42 PMF patient samples compared with 31 healthy controls. Integrative analysis of these profiles by means of Ingenuity Pathway Analysis (IPA) allowed the identification of several aberrantly regulated miRNA-mRNA target pairs organized in interaction networks. In particular, our results highlighted the up-regulation of miR-494-3p in CD34+ cells from PMF patients (Norfo R et al, Blood, 2014). Interestingly, among the most upregulated miRNAs, miR-494-3p emerges as being associated to the highest number of downregulated target mRNAs. In order to understand the biological role of miR-494-3p during the hematopoietic commitment and differentiation, we overexpressed this miRNA in cord blood (CB) derived-CD34+ cells. Cells were electroporated with either miR-494-3p miRNA mimic (mimic miR-494) or a negative control mimic (mimic Neg CTR). qRT-PCR confirmed miR-494-3p overexpression 24h and 4 days after transfection (RQ SEM, 512.60 137.37, p<.01, and 20.63 3.03, p<.01, respectively).

Publication Title

miR-494-3p overexpression promotes megakaryocytopoiesis in primary myelofibrosis hematopoietic stem/progenitor cells by targeting SOCS6.

Sample Metadata Fields

Specimen part, Treatment

View Samples

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact