refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 394 results
Sort by

Filters

Technology

Platform

accession-icon GSE73125
Transcriptome-based profiling reveals a macrophage pedigree and identifies Irf8 as pivotal for macrophage homeostasis and function
  • organism-icon Mus musculus
  • sample-icon 81 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.1 ST Array (mogene21st)

Description

Recent studies have shown that tissue macrophages (MF) arise from embryonic progenitors of the yolk sac (YS) and fetal liver and colonize the tissues before birth. Further studies have proposed that developmentally distinct tissue MF can be identified based on the differential expression of F4/80 and CD11b, but whether a characteristic transcriptional profile exists is largely unknown. Here, we established an inducible fate mapping system that facilitated the identification of A2 progenitors of the YS as source of F4/80hi but not CD11bhi MF. Large-scale transcriptional profiling of MF precursors from the YS until adulthood allowed the description of a complex MF pedigree. We further identified a distinct molecular signature of F4/80hi and CD11bhi MF and found that Irf8 was vital for MF maturation and the innate immune response. Our data provide new cellular and molecular insights into the origin and developmental pathways of tissue MF.

Publication Title

Transcriptome-based profiling of yolk sac-derived macrophages reveals a role for Irf8 in macrophage maturation.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE67918
Non-alcoholic steatohepatitis causes selective CD4+ T cell loss and promotes hepatocarcinogenesis
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

Hepatocellular carcinoma (HCC) is the second most common cause of cancer related death. NAFLD affects a large proportion of the US population. Its incidence and prevalence are increasing to epidemic proportions around the world and is known to increase the risk of HCC. We studied how intrahepatic lipids affect adaptive immunity and HCC development in different murine models of NASH and HCC. Linoleic acid, a fatty acid found in NAFLD caused a selective loss of hepatic CD4+ but not CD8+ T cells leading to accelerated hepatocarcinogenesis. CD4+ T cells were more dependent on oxidative phosphorylation for energy source than CD8+ T cells, and disruption of oxidative phosphorylation by linoleic acid caused more severe damage in CD4+ T cells leading to selective loss of these cells. In vivo blockade of ROS using n-acetylcysteine reversed the NASH-induced hepatic CD4+ T cell decrease and delayed NASH-promoted HCC. Our results provide a new link between lipid metabolism and impaired anti-tumor surveillance.

Publication Title

NAFLD causes selective CD4(+) T lymphocyte loss and promotes hepatocarcinogenesis.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE79040
RIPK3 restricts myeloid leukemogenesis by promoting cell death and differentiation of leukemia initiating cells
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 R2 expression beadchip

Description

Examination of gene expression patterns in lineage negative FLT3-ITD and pMIG-transduced BM cells via microarray study.

Publication Title

RIPK3 Restricts Myeloid Leukemogenesis by Promoting Cell Death and Differentiation of Leukemia Initiating Cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE46667
Lymphotoxin-beta receptor activation in HBV-infected HepaRG cells
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

The objective of this experiment was to test the effect, at a transcrptomic level, of lymphotoxin-beta receptor activation in HBV-infected differentiated HepaRG cells

Publication Title

Specific and nonhepatotoxic degradation of nuclear hepatitis B virus cccDNA.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE102418
A comparative miRNA/mRNA analysis in distinct murine liver cancer models reveals miR-193a-5p and NUSAP1 as therapeutic targets in HCC
  • organism-icon Mus musculus
  • sample-icon 35 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.1 ST Array (mogene11st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

microRNA 193a-5p Regulates Levels of Nucleolar- and Spindle-Associated Protein 1 to Suppress Hepatocarcinogenesis.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE102416
A comparative miRNA/mRNA analysis in distinct murine liver cancer models reveals miR-193a-5p and NUSAP1 as therapeutic targets in HCC [mRNA]
  • organism-icon Mus musculus
  • sample-icon 35 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.1 ST Array (mogene11st)

Description

BACKGROUND & AIMS: We performed an integrated analysis to identify microRNAs (miRNAs) and mRNAs with altered expression in liver tumors from 3 mouse models of hepatocellular carcinoma (HCC) and human tumor tissues.

Publication Title

microRNA 193a-5p Regulates Levels of Nucleolar- and Spindle-Associated Protein 1 to Suppress Hepatocarcinogenesis.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE74063
Brain Endothelial Specific IFNAR Is Key For Virus-Induced Sickness Behavior And Cognitive Impairment
  • organism-icon Mus musculus
  • sample-icon 26 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.1 ST Array (mogene21st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Brain Endothelial- and Epithelial-Specific Interferon Receptor Chain 1 Drives Virus-Induced Sickness Behavior and Cognitive Impairment.

Sample Metadata Fields

Sex, Specimen part, Treatment, Time

View Samples
accession-icon GSE74015
Gene expression from splenic cells in response to VSV-M2 and ligands to RIG-I and MDA5
  • organism-icon Mus musculus
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.1 ST Array (mogene21st)

Description

VSV-M2 is recognized by cytosolic RIG-I. Notably, 5'-triphosphate RNA molecules derived from either viral RNA or from the synthetically produced 3pRNA can also induce RIG-I activation. MDA5 stimulation is achieved using complexed poly(I:C), a synthetic analog of viral dsRNA.

Publication Title

Brain Endothelial- and Epithelial-Specific Interferon Receptor Chain 1 Drives Virus-Induced Sickness Behavior and Cognitive Impairment.

Sample Metadata Fields

Sex, Specimen part, Treatment, Time

View Samples
accession-icon GSE74061
IFN type I-induced gene expression from brain endothelia
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.1 ST Array (mogene21st)

Description

Brain endothelial cells are an essential part of the blood-brain-barrier (BBB) and, as such, are exposed to proinflammatory mediators as well as danger signals during infections. They might function as decisive cells mediating RNA virus- and IFN-mediated sickness behavior.

Publication Title

Brain Endothelial- and Epithelial-Specific Interferon Receptor Chain 1 Drives Virus-Induced Sickness Behavior and Cognitive Impairment.

Sample Metadata Fields

Specimen part, Treatment, Time

View Samples
accession-icon GSE24450
183 breast tumors from the Helsinki Univerisity Central Hospital with survival information
  • organism-icon Homo sapiens
  • sample-icon 183 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V3.0 expression beadchip

Description

183 breast tumors from the Helsinki Univerisity Central Hospital with survival information

Publication Title

Variants on the promoter region of PTEN affect breast cancer progression and patient survival.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact