refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 785 results
Sort by

Filters

Technology

Platform

accession-icon SRP081314
Expression profiling of cochlear ducts from P8 Gfi1cre/+ and Gfi1+/+ mice
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

The Gfi1-Cre mouse is commonly used for conditional hair cell-specific gene deletion/activation in the inner ear. However, we have shown that these mice produce a pattern of recombination that is not strictly limited to hair cells, and that Gfi1cre/+ mice exhibit an early onset progressive hearing loss as compared with their wildtype littermates. Here we performed a transcriptome analysis of Gfi1cre/+ and Gfi1+/+ cochlea to detect potential changes in gene expression that could contribute to their hearing loss phenotype, or that could potentially confound downstream analysis of conditional gene deletion using these mice. Overall design: Trancriptome profiles of P8 cochlear duct from mice of two genotype - Gfi1cre/+ and Gfi+/+ controls - were measured. Gene expression levels were recorded in independent triplicates using polyA-enriched RNA-seq

Publication Title

Gfi1<sup>Cre</sup> mice have early onset progressive hearing loss and induce recombination in numerous inner ear non-hair cells.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon SRP152410
RiboTag translatome analysis of outer hair cell postnatal development
  • organism-icon Mus musculus
  • sample-icon 34 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 4000

Description

In order to determine the regulators of outer hair cell postnatal maturation, we utilized the RiboTag mouse model to perform a detailed transcriptomic analysis of outer hair cells at five postnatal developmental time points: P8, P14, P28, 6 weeks (6wk) and 10 weeks (10wk). This analysis resulted in consistent enrichment of outer hair cell expressed genes in the immunoprecipitated RNA compared to whole cochlear input RNA from each time point. Using transcription factor binding motif prediction on a set of defined outer hair cell enriched genes, we further use this dataset to identify the helios transcription factor as a regulator of the postnatal outer hair cell transcriptome. Overall design: Examination of the outer hair cell translatome by outer hair cell expressed HA-tagged ribosomal immunoprecipitation at 5 postnatal timepoints (P8, P14, P21, 6wk and 10wk). Immunoprecipitated samples were compared to input cochlear RNA controls in independent biological duplicates or triplicates.

Publication Title

Helios is a key transcriptional regulator of outer hair cell maturation.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon SRP056772
RNA-seq expression profiling of murine inner-ear hair cells
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Sensorineural hearing loss affects the majority of the elderly population. Mammalian hair cells (HC) do not regenerate and current stem cell and gene delivery protocols result only in immature hair cells like-cells. For this reason, characterization of the transcriptional cascades that lead to development and survival of inner ear HC is essential for designing molecular-based treatments for deafness. We employed a cell type-specific approach to analyze the transcriptomes of the mouse early postnatal auditory and vestibular sensory epithelia and of hair cells derived from zebrafish model. Overall design: Murine auditory and vestibular epithelia were separated into hair-cells (HCs) and epithelial non-sensory cells (ENSCs) by flow cytometry. Gene expression levels were recorded in independent triplicates from the sorted cells using RNA-seq

Publication Title

RFX transcription factors are essential for hearing in mice.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP056773
RNA-seq expression profiling of hair-cells in zebrafish
  • organism-icon Danio rerio
  • sample-icon 2 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

Sensorineural hearing loss affects the majority of the elderly population. Mammalian hair cells (HC) do not regenerate and current stem cell and gene delivery protocols result only in immature hair cells like-cells. For this reason, characterization of the transcriptional cascades that lead to development and survival of inner ear HC is essential for designing molecular-based treatments for deafness. We employed a cell type-specific approach to analyze the transcriptomes of the mouse early postnatal auditory and vestibular sensory epithelia and of hair cells derived from zebrafish model. Overall design: We utilized the ppv3b:GFP transgenic zebrafish, which express GFP predominantly in HC. We sorted GFP-positive and negative cells from 5 day post fertilization (dpf) larvae using flow cytometry, and profiled their transcriptomes using RNA-seq

Publication Title

RFX transcription factors are essential for hearing in mice.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP162647
Single cell transcriptional profiles of control and Ikzf2-transfected mouse cochlear cells
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

In order to determine the transcriptional effect of Ikzf2 overexpression in mammalian auditory hair cells, mouse cochleae were transfected with either a control GFP or a Ikzf2 virus between postnatal day 1 and 3 (P1-3) and then harvested for single cell gene expression profiling at postnatal day 8 (P8) on the 10X Genomics Single Cell 3' v2 platform. Overall design: Dataset is composed of two separate single cell RNA-Seq samples captured on the 10X Genomics Chromium platform with the Single Cell 3' Solution v2 chemistry. Viral GFP- (control) or Ikzf2-transfected cochleae were harvested and single cell suspensions prepared from transgenic mice expressing tdTomato in hair cells. Hair cells expressing tdTomato were enriched by flow sorting and then captured on the Chromium system in parellel. Library preparation and sequencing was performed as defined by the 10X Genomics Single Cell 3' Solution v2 protocol.

Publication Title

Helios is a key transcriptional regulator of outer hair cell maturation.

Sample Metadata Fields

Specimen part, Cell line, Treatment, Subject

View Samples
accession-icon GSE6095
Diagnosis of Acute Lung Rejection by Gene Expression Profiling of Bronchoalveolar Lavage Cells
  • organism-icon Mus musculus, Homo sapiens
  • sample-icon 66 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Expression 430A Array (moe430a), Affymetrix Human Genome U133A Array (hgu133a)

Description

Acute lung rejection is a risk factor for chronic rejection, jeopardizing the long-term survival of lung transplant recipients. At present, acute rejection is diagnosed by transbronchial lung biopsies, which are invasive, expensive, and subject to significant sampling error. In this study, we sought to identify groups of genes whose collective expression in BAL cells best classifies acute rejection versus no-rejection. BAL samples were analyzed from 32 unique subjects whose concurrent histology showed acute rejection (n=14) or no rejection (n=18). Global BAL cell gene expression was measured using Affymetrix U133A microarrays. The nearest shrunken centroid method with 10-fold cross validation was used to define the classification model. 250 runs of the algorithm were performed to determine the range of misclassification error and the most influential genes in determining classifiers. The estimated overall misclassification rate was below 20%. Seven transcripts were present in every classifier and 52 transcripts were present in at least 70% of classifiers; these transcripts were notable for involvement with T-cell function, cytotoxic CD8 activity, and granulocyte degranulation. The proportions of both lymphocytes and neutrophils in BAL samples increased with increasing probability of acute rejection; this trend was more pronounced with neutrophils. We conclude that there is a prominent acute rejection-associated signature in BAL cells characterized by increased T-cell, CD8+ cytotoxic cell, and neutrophil gene expression; this is consistent with established mechanistic concepts of the acute rejection response.

Publication Title

Bronchoalveolar lavage cell gene expression in acute lung rejection: development of a diagnostic classifier.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE2018
Human Lung Transplant - BAL
  • organism-icon Homo sapiens
  • sample-icon 34 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Bronchoalveolar lavage samples collected from lung transplant recipients. Numeric portion of sample name is an arbitrary patient ID and AxBx number indicates the perivascular (A) and bronchiolar (B) scores from biopsies collected on the same day as the BAL fluid was collected. Several patients have more than one sample in this series and can be determined by patient number followed by a lower case letter. Acute rejection state is determined by the combined A and B score - specifically, a combined AB score of 2 or greater is considered an acute rejection.

Publication Title

Gene expression profiling of bronchoalveolar lavage cells in acute lung rejection.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP071700
Coupling between alternative polyadenylation and alternative splicing is limited to terminal introns
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIlluminaGenomeAnalyzerIIx

Description

Alternative polyadenylation has been implicated as an important regulator of gene expression. In some cases, alternative polyadenylation is known to couple with alternative splicing to influence last intron removal. However, it is unknown whether alternative polyadenylation events influence alternative splicing decisions at upstream exons. Knockdown of the polyadenylation factors CFIm25 or CstF64 was used as an approach in identifying alternative polyadenylation and alternative splicing events on a genome-wide scale. Although hundreds of alternative splicing events were found to be differentially spliced in the knockdown of CstF64, genes associated with alternative polyadenylation did not exhibit an increased incidence of alternative splicing. These results demonstrate that the coupling between alternative polyadenylation and alternative splicing is usually limited to defining the last exon. The striking influence of CstF64 knockdown on alternative splicing can be explained through its effects on UTR selection of known splicing regulators such as hnRNP A2/B1, thereby indirectly influencing splice site selection. We conclude that changes in the expression of the polyadenylation factor CstF64 influences alternative splicing through indirect effects. Overall design: HeLa cell line was stably transfected with shRNA plasmids targeting CstF64. Total RNA was isolated from CstF64 KD cells and wild-type control cells using Trizol according to manufacturer’s protocols. Samples were deep sequenced in duplicate using the Illumina GAIIx system.

Publication Title

Coupling between alternative polyadenylation and alternative splicing is limited to terminal introns.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE77153
Expression data from VND7 induction line
  • organism-icon Arabidopsis thaliana
  • sample-icon 69 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

Plants typically contain two different types of cell walls: a primary wall that is being deposited around all growing cells, and a secondary wall that is produced in cells with specialized functions once they have ceased to grow. In Arabidopsis, VND7 is a transcription factor that is sufficient to activate secondary cell wall synthesis. To artificially turn on the secondary cell wall synthesis, VND7 was fused to the activation domain of the herpes virus VP16 protein and the glucocorticoid receptor (GR) domain. Thus, the transgenic plants harbouring the constructs can then be treated with dexamethasone (DEX), a glucocorticoid derivative, to induce the secondary cell wall formation.

Publication Title

A Transcriptional and Metabolic Framework for Secondary Wall Formation in Arabidopsis.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE148414
Eye-antenna early L3 disc expression profiling in combinations of COX7a-LoF, ATF4-LoF and Notch-GoF
  • organism-icon Drosophila melanogaster
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Drosophila Genome 2.0 Array (drosophila2)

Description

Gene expression in larval, early third instar eye-antenna discs was assessed to reveal an ATF4 contribution to target gene induction following COX7a knockdown. As hypothesised, these COX7a-RNAi induced target genes require the transcription factor ATF4 for induction, irrespective of concomitant Notch pathway activation through Delta over-expression.

Publication Title

ATF4-Induced Warburg Metabolism Drives Over-Proliferation in Drosophila.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact