refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 175 results
Sort by

Filters

Technology

Platform

accession-icon GSE47700
Expression data for hematopoietic stem cells (lin- sca1+ ckit+) isolated from the bone marrow of Ercc1-deficient and proficient littermates
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

To identify cellular and genetic abnormalities involved in interstrand cross link repair-deficient bone marrow failure and its transformation to leukemia, we used an Ercc1 hypomorphic mouse model (Ercc1 -/d).

Publication Title

ICL-induced miR139-3p and miR199a-3p have opposite roles in hematopoietic cell expansion and leukemic transformation.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon SRP043469
Sp1/Sp3 transcription factors regulate hallmarks of megakaryocyte maturation, and platelet formation and function
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Sp1 and Sp3 belong to the Specificity proteins (Sp)/Krüppel-like transcription factor family. They are closely related, ubiquitously expressed and recognize G-rich DNA motifs. They are thought to regulate generic processes such as cell cycle and growth control, metabolic pathways and apoptosis. Ablation of Sp1 or Sp3 in mice is lethal, and combined haploinsufficiency results in hematopoietic defects during the fetal stages. Here, we show that in adult mice conditional ablation of either Sp1 or Sp3 has minimal impact on hematopoiesis, while the simultaneous loss of Sp1 and Sp3 results in severe macrothrombocytopenia and platelet dysfunction. We employed flow cytometry, cell culture and electron microscopy and show that although megakaryocyte numbers are normal in bone marrow and spleen, they display a less compact demarcation membrane system and a striking inability to form proplatelets. Through megakaryocyte transcriptomics and platelet proteomics we identified several cytoskeleton-related proteins and downstream effector kinases, including Mylk, that were downregulated upon Sp1/Sp3 depletion, providing an explanation for the observed defects in megakaryopoiesis. We show that Mylk is required for proplatelet formation and stabilization and for ITAM-receptor mediated platelet aggregation. Our data highlights the specific vs generic role of these ubiquitous transcription factors in the highly specialized megakaryocytic lineage. Overall design: Megakaryocyte mRNA profiles of Sp1fl/fl::Sp3fl/fl (WTlox) and Pf4-Cre::Sp1fl/fl::Sp3fl/fl (dKO) mice were generated by deep sequencing, in triplicate.

Publication Title

Sp1/Sp3 transcription factors regulate hallmarks of megakaryocyte maturation and platelet formation and function.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP059610
GATA1-deficient dendritic cells display impaired CCL21-dependent migration towards lymph nodes due to reduced levels of polysialic acid
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Dendritic cells (DCs) play a pivotal role in the regulation of the immune response. DC development and activation is finely orchestrated through transcriptional programs. GATA1 transcription factor is required for murine DC development and data suggests that it might be involved in the fine-tuning of the life span and function of activated DCs. We generated DC-specific Gata1 knockout mice (Gata1-KODC), which presented a 20% reduction of splenic DCs, partially explained by enhanced apoptosis. RNA-Seq analysis revealed a number of deregulated genes involved in cell survival, migration and function. DC migration towards peripheral lymph nodes was impaired in Gata1-KODC mice. Migration assays performed in vitro showed that this defect was selective for CCL21, but not CCL19. Interestingly, we show that Gata1-KODC DCs have reduced polysialic acid levels on their surface, which is a known determinant for the proper migration of DCs towards CCL21. Overall design: Dendritic cells from Gata1 knock-out or wild-type mice were stimulated with LPS of unstimulated (under steady state), 2 biological replicates each

Publication Title

GATA1-Deficient Dendritic Cells Display Impaired CCL21-Dependent Migration toward Lymph Nodes Due to Reduced Levels of Polysialic Acid.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP015982
Small RNA analysis of Tu And SJD zebrafish strain and their progeny
  • organism-icon Danio rerio
  • sample-icon 20 Downloadable Samples
  • Technology Badge IconIlluminaGenomeAnalyzerIIx

Description

Small RNA libraries from total RNA isolated from adult ovaries Overall design: Small RNA libraries were derived from Ovaries of the Founder strain and their offspring and their reciprocal offspring. RNA from 5 individual ovaries was pooled .

Publication Title

piRNA dynamics in divergent zebrafish strains reveal long-lasting maternal influence on zygotic piRNA profiles.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP139927
Transcriptomic analysis of myosin IIa-deficient B cells
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Myosin IIa-deficient follicular B cells have a hyperactivated phenotype. To identify what pathways are regulated by myosin IIa, we performed RNA-seq of coding RNA on flow cytometry sorted follicular B cells from CD23Cre+Myh9fl/fl and CD23Cre+Myh9wt/fl mice. Overall design: B220+AA4.1-CD23+CD21lo follicular B cells were sorted from 3 CD23Cre+Myh9fl/fl and 3 CD23Cre+Myh9wt/fl mice and mRNA was isolated and sequenced.

Publication Title

Myosin IIa Promotes Antibody Responses by Regulating B Cell Activation, Acquisition of Antigen, and Proliferation.

Sample Metadata Fields

Cell line, Subject

View Samples
accession-icon GSE99340
Transcriptome-based network analysis reveals renal cell type-specific dysregulation of hypoxia-associated transcripts
  • organism-icon Homo sapiens
  • sample-icon 402 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Transcriptome-based network analysis reveals renal cell type-specific dysregulation of hypoxia-associated transcripts.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE99339
Transcriptome-based network analysis reveals renal cell type-specific dysregulation of hypoxia-associated transcripts [glomeruli]
  • organism-icon Homo sapiens
  • sample-icon 187 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Accumulating evidence suggests that dysregulation of hypoxia-regulated transcriptional mechanisms is involved in development of chronic kidney diseases (CKD). However, it remains unclear how hypoxia-induced transcription factors (HIFs) and subsequent biological processes contribute to CKD development and progression. In our study, genome-wide expression profiles of more than 200 renal biopsies from patients with different CKD stages revealed significant correlation of HIF-target genes with eGFR in glomeruli and tubulointerstitium. These correlations were positive and negative and in part compartment-specific. Microarrays of proximal tubular cells and podocytes with stable HIF1 and/or HIF2 suppression displayed cell type-specific HIF1/HIF2-dependencies as well as dysregulation of several pathways. WGCNA analysis identified gene sets that were highly coregulated within modules. Characterization of the modules revealed common as well as cell group- and condition-specific pathways, GO-Terms and transcription factors. Gene expression analysis of the hypoxia-interconnected pathways in patients with different CKD stages revealed an increased dysregulation with loss of renal function. In conclusion, our data clearly point to a compartment- and cell type-specific dysregulation of hypoxia-associated gene transcripts and might help to improve the understanding of hypoxia, HIF dysregulation, and transcriptional program response in CKD.

Publication Title

Transcriptome-based network analysis reveals renal cell type-specific dysregulation of hypoxia-associated transcripts.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE99325
Transcriptome-based network analysis reveals renal cell type-specific dysregulation of hypoxia-associated transcripts [Tub-FE]
  • organism-icon Homo sapiens
  • sample-icon 169 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Accumulating evidence suggests that dysregulation of hypoxia-regulated transcriptional mechanisms is involved in development of chronic kidney diseases (CKD). However, it remains unclear how hypoxia-induced transcription factors (HIFs) and subsequent biological processes contribute to CKD development and progression. In our study, genome-wide expression profiles of more than 200 renal biopsies from patients with different CKD stages revealed significant correlation of HIF-target genes with eGFR in glomeruli and tubulointerstitium. These correlations were positive and negative and in part compartment-specific. Microarrays of proximal tubular cells and podocytes with stable HIF1 and/or HIF2 suppression displayed cell type-specific HIF1/HIF2-dependencies as well as dysregulation of several pathways. WGCNA analysis identified gene sets that were highly coregulated within modules. Characterization of the modules revealed common as well as cell group- and condition-specific pathways, GO-Terms and transcription factors. Gene expression analysis of the hypoxia-interconnected pathways in patients with different CKD stages revealed an increased dysregulation with loss of renal function. In conclusion, our data clearly point to a compartment- and cell type-specific dysregulation of hypoxia-associated gene transcripts and might help to improve the understanding of hypoxia, HIF dysregulation, and transcriptional program response in CKD.

Publication Title

Transcriptome-based network analysis reveals renal cell type-specific dysregulation of hypoxia-associated transcripts.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE99324
Transcriptome-based network analysis reveals renal cell type-specific dysregulation of hypoxia-associated transcripts [HK2]
  • organism-icon Homo sapiens
  • sample-icon 25 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Accumulating evidence suggests that dysregulation of hypoxia-regulated transcriptional mechanisms is involved in development of chronic kidney diseases (CKD). However, it remains unclear how hypoxia-induced transcription factors (HIFs) and subsequent biological processes contribute to CKD development and progression. In our study, genome-wide expression profiles of more than 200 renal biopsies from patients with different CKD stages revealed significant correlation of HIF-target genes with eGFR in glomeruli and tubulointerstitium. These correlations were positive and negative and in part compartment-specific. Microarrays of proximal tubular cells and podocytes with stable HIF1 and/or HIF2 suppression displayed cell type-specific HIF1/HIF2-dependencies as well as dysregulation of several pathways. WGCNA analysis identified gene sets that were highly coregulated within modules. Characterization of the modules revealed common as well as cell group- and condition-specific pathways, GO-Terms and transcription factors. Gene expression analysis of the hypoxia-interconnected pathways in patients with different CKD stages revealed an increased dysregulation with loss of renal function. In conclusion, our data clearly point to a compartment- and cell type-specific dysregulation of hypoxia-associated gene transcripts and might help to improve the understanding of hypoxia, HIF dysregulation, and transcriptional program response in CKD.

Publication Title

Transcriptome-based network analysis reveals renal cell type-specific dysregulation of hypoxia-associated transcripts.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE99323
Transcriptome-based network analysis reveals renal cell type-specific dysregulation of hypoxia-associated transcripts [AB81]
  • organism-icon Homo sapiens
  • sample-icon 21 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Accumulating evidence suggests that dysregulation of hypoxia-regulated transcriptional mechanisms is involved in development of chronic kidney diseases (CKD). However, it remains unclear how hypoxia-induced transcription factors (HIFs) and subsequent biological processes contribute to CKD development and progression. In our study, genome-wide expression profiles of more than 200 renal biopsies from patients with different CKD stages revealed significant correlation of HIF-target genes with eGFR in glomeruli and tubulointerstitium. These correlations were positive and negative and in part compartment-specific. Microarrays of proximal tubular cells and podocytes with stable HIF1 and/or HIF2 suppression displayed cell type-specific HIF1/HIF2-dependencies as well as dysregulation of several pathways. WGCNA analysis identified gene sets that were highly coregulated within modules. Characterization of the modules revealed common as well as cell group- and condition-specific pathways, GO-Terms and transcription factors. Gene expression analysis of the hypoxia-interconnected pathways in patients with different CKD stages revealed an increased dysregulation with loss of renal function. In conclusion, our data clearly point to a compartment- and cell type-specific dysregulation of hypoxia-associated gene transcripts and might help to improve the understanding of hypoxia, HIF dysregulation, and transcriptional program response in CKD.

Publication Title

Transcriptome-based network analysis reveals renal cell type-specific dysregulation of hypoxia-associated transcripts.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact