Plants exhibit a robust transcriptional response to gamma radiation which includes the induction of transcripts required for homologous recombination and the suppression of transcripts that promote cell cycle progression. Various DNA damaging agents induce different spectra of DNA damage as well as collateral damage to other cellular components and therefore are not expected to provoke identical responses by the cell.
High atomic weight, high-energy radiation (HZE) induces transcriptional responses shared with conventional stresses in addition to a core "DSB" response specific to clastogenic treatments.
Age, Time
View SamplesEffects of aneuploidy on gene expression in Arabidopsis thaliana containing extra copies of chromosome 5.
Effects of aneuploidy on genome structure, expression, and interphase organization in Arabidopsis thaliana.
Specimen part, Subject
View SamplesThe Wnt signaling pathway is deregulated in over 90% of human colorectal cancers. Catenin, the central signal transducer of the Wnt pathway, can directly modulate gene expression by interacting with transcription factors of the TCF/LEF-family. In the present study we investigate the role of Wnt signaling in the homeostasis of intestinal epithelium using tissue-specific, inducible beta-catenin gene ablation in adult mice. Block of Wnt/beta-catenin signaling resulted in rapid loss of transient-amplifying cells and crypt structures. Importantly, intestinal stem cells were induced to terminally differentiate upon deletion of beta-catenin resulting in a complete block of intestinal homeostasis and fatal loss of intestinal function. Transcriptional profiling of mutant crypt mRNA isolated by laser capture micro dissection confirmed those observations and allowed to identify genes potentially responsible for the functional preservation of intestinal stem cells.
Wnt/beta-catenin is essential for intestinal homeostasis and maintenance of intestinal stem cells.
No sample metadata fields
View SamplesIdentification of Hox gene downstream genes at embryonic stages 11 and 12<br></br><br></br>Functional diversification of body parts is dependent on the formation of specialized structures along the various body axes. In animals, region-specific morphogenesis along the anterior-posterior axis is controlled by a group of conserved transcription factors encoded by the Hox genes. Although it has long been assumed that Hox proteins carry out their function by regulating distinct sets of downstream genes, only a small number of such genes have been found, with very few having direct roles in controlling cellular behavior. We have quantitatively identified hundreds of Hox downstream genes in Drosophila by microarray analysis, and validated many of them by in situ hybridizations on loss- and gain-of-function mutants. One important finding is that Hox proteins, despite their similar DNA binding properties in vitro, have highly specific effects on the transcriptome in vivo, as expression of many downstream genes responds primarily to a single Hox protein. In addition, a large fraction of downstream genes encodes realizator functions, which directly affect morphogenetic processes, such as orientation and rate of cell divisions, cell-cell adhesion and communication, cell shape and migration, or cell death. Focusing on these realizators, we provide a framework for the morphogenesis of the maxillary segment. Since the genomic organization of Hox genes and the interaction of Hox proteins with specific cofactors are conserved in vertebrates and invertebrates, and similar classes of downstream genes are regulated by Hox proteins across the metazoan phylogeny, our findings represent a first step towards a mechanistic understanding of morphological diversification within a species as well as between species.
Comparative analysis of Hox downstream genes in Drosophila.
Age, Time
View SamplesTransgenic animals were engineered to express human amyloid peptide controlled by a muscle-specific, heat-inducible promoter. At low temperatures (16C) Abeta expression is minimal, while at higher temperatures (20-25C) Abeta accummulates in large quantities and causes paralysis.
Identifying Aβ-specific pathogenic mechanisms using a nematode model of Alzheimer's disease.
Time
View SamplesHere we identify HOXA5 as an important repressor of intestinal stem cell fate in vivo and identify a reciprocal feedback between HOXA5 and Wnt signaling. HOXA5 is suppressed by the Wnt pathway to maintain stemness and becomes active only outside the intestinal crypt where it inhibits Wnt signaling to enforce differentiation. In colon cancer, HOXA5 is down-regulated and its re-expression induces loss of the cancer stem cell phenotype preventing tumor progression and metastasis. Tumor regression by HOXA5 induction can be triggered by retinoids, which represents a tangible means to treat colon cancer by eliminating cancer stem cells.
HOXA5 Counteracts Stem Cell Traits by Inhibiting Wnt Signaling in Colorectal Cancer.
Cell line, Treatment
View SamplesFemale C57BL/6J mice hemizygous for the 5XFAD transgene (MMRRC Stock No #34848-JAX) were bred to males from BXD strains, which do not carry the 5XFAD transgene. The resulting F1 progeny were monitored throughout their lifespan to evaluate the effect of genetic background on cognitive and pathological traits. All of the mice were fear conditioned and sacrificed within 30 minutes of testing. On the sample records, the characteristics: age field provides the age at which fear conditioning, sacrifice, and tissue collection occurred. Samples here come from various AD-BXD lines and their non-transgenic (Ntg) littermate counterparts at either 6 or 14 months of age. Overall design: 133 samples, 64 Ntg and 69 AD. For final by-strain analysis, samples were averaged into strain/age/genotype/sex groups (For example, all D2 6mo 5XFAD males were averaged for final by-strain analysis)
Harnessing Genetic Complexity to Enhance Translatability of Alzheimer's Disease Mouse Models: A Path toward Precision Medicine.
Sex, Age, Specimen part, Subject
View SamplesTumors from 5-6 month old KrasLA mice were dissected. Gene expression analysis on U74A affy chips. 19 normal lungs from age matched controls were also includeed
Comparison of gene expression and DNA copy number changes in a murine model of lung cancer.
Sex, Age, Disease, Disease stage
View SamplesDeficiency of the micronutrient zinc is a widespread condition in agricultural soils, generating a negative impact on crop quality and yield. Nevertheless, there is insufficient knowledge on the regulatory and molecular mechanisms underlying the plant response to inadequate zinc nutrition.
Transcriptomic profiling of Arabidopsis gene expression in response to varying micronutrient zinc supply.
Age, Specimen part
View SamplesWe investigated the ability of monoclonal B cells to restore primary and secondary antibody responses in adoptive immune-deficient hosts. Priming induced B cell activation and expansion, AID expression, antibody production and the generation of IgM+IgG- and IgM-IgG+ antigen-experienced B-cell subsets that persisted in the lymphopenic environment by cell division. Using RNA sequencing, we compared the gene expression profil of memory B cells subpopulations and activated B cells. These data showed a clear discrimination of naïve and activated/memory cells while indicating only minor differences between both subsets of memory cells. Overall design: mRNA profiles of B cell subtypes (activated, memory IgM+, memory IgG+) were generated by deep sequencing, in triplicate, using Illumina
Regulation and Maintenance of an Adoptive T-Cell Dependent Memory B Cell Pool.
Specimen part, Cell line, Subject
View Samples