refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 127 results
Sort by

Filters

Technology

Platform

accession-icon GSE44561
Effect of Notch1 pathway activation on high-grade glioma cells
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.1 ST Array (hugene11st)

Description

In this study, we explored the transcriptomic consequences of strong activation of the Notch pathway in embryonic human neural stem cells and in gliomas. For this we used a forced expression of the Notch intracellular domain (NICD).

Publication Title

Notch1 stimulation induces a vascularization switch with pericyte-like cell differentiation of glioblastoma stem cells.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE118445
High throughput analysis of the human and mouse spinal cord neural stem cell niche
  • organism-icon Mus musculus, Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix HT MG-430 PM Array Plate (htmg430pm)

Description

Anamniotes, rodents and man maintain a pool of adult neural stem cells around the central canal in the spinal cord representing an attractive cellular source for endogenous repair. Cell diversity and genes specific for this niche are still ill-defined in mammals. To identify genes specifically expressed in the niche, we microdissected (with laser) the central canal region and the adjacent tissue in human and mice adult tissues. Total RNA was isolated and used to probe affymetrix microarrays

Publication Title

RNA Profiling of the Human and Mouse Spinal Cord Stem Cell Niches Reveals an Embryonic-like Regionalization with MSX1<sup>+</sup> Roof-Plate-Derived Cells.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon SRP026540
Comparative Transcriptomics of Soybean Near Isogenic Lines in Response to Phytophthora Sojae
  • organism-icon Glycine max
  • sample-icon 22 Downloadable Samples
  • Technology Badge IconIllumina HiScanSQ

Description

Phytophthora root and stem rot (PRR) of soybean, caused by Phytophthora sojae, is effectively controlled by Rps genes in soybean. Rps genes are race-specific, yet the mechanism of resistance, as well as susceptibility, remains largely unclear. Taking advantage of RNA-seq technology, we sequenced the transcriptomes of 10 near isogenic lines (NIL), each with a unique Rps gene, and the recurrent susceptible parent 'Williams'. A total of 4330 differentially expressed genes (DEGs) were identified in 'Williams' while 2075 to 5499 DEGs were identified in each NIL. Comparisons between the NILs and 'Williams' allowed classification of two major groups of DEGs of interest: incompatible reaction associated genes (IRAGs) and compatible reaction associated genes (CRAGs). Hierarchical cluster analysis divided NILs into three clusters: Cluster I (Rps1-a), Cluster II (Rps1-b, 1-c and 1-k) and Cluster III (Rps3-a, 3-b, 3-c, 4, 5, and 6). Heatmap analysis, along with GO analysis suggested that the diversity of clusters for NILs were likely due to variation of the number of DEGs and the intensity of gene expression, rather than functional differentiation. Further analysis suggested that transcription factors might play pivotal role in determination of the cluster pattern, and that WRKY family were strongly associated with incompatible reactions. Analysis of IRAGs and CRAGs with putative functions suggested that the regulation of many phytohormone signaling pathways were associated with incompatible or compatible interactions with potential crosstalk between each other. As such, our study provides an in depth view of both incompatible and compatible interactions between soybean and P. sojae, which provides further insight into the mechanisms involved in host-pathogen interactions. Overall design: 22 samples were sequenced, 11 inoculated with P. sojae, the other 11 were mock-inoculated

Publication Title

Molecular response to the pathogen Phytophthora sojae among ten soybean near isogenic lines revealed by comparative transcriptomics.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE53054
Global expression of mouse hepatocytes cultured as monolayers or as three-dimensional aggregates
  • organism-icon Mus musculus
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Three-dimensional (3D) culture of hepatocytes leads to improved and prolonged synthetic and metabolic functions, but the underlying molecular mechanisms were unknown. In order to investigate the molecular mechanisms underlying 3D cell-cell interactions in maintaining hepatocyte differentiated functions ex vivo, microarray analyses were performed on primary mouse hepatocytes cultured either as monolayers on tissue culture dishes (TCD) or as 3D aggregates in rotating wall vessel (RWV) bioreactors.

Publication Title

Molecular mechanisms underlying the enhanced functions of three-dimensional hepatocyte aggregates.

Sample Metadata Fields

Sex

View Samples
accession-icon GSE7112
Abscisic acid effect on wild type and the abh1 mutant
  • organism-icon Arabidopsis thaliana
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

Analysis of the abh1 mutant Arabidopsis plants following treatment with 50 uM abscisic acid (ABA). ABH1 encodes the large (80kDa) subunit of the nuclear mRNA cap binding complex and affects early ABA signal transduction events (Hugouvieux et al., 2001, Cell 106, 477).

Publication Title

mRNA cap binding proteins: effects on abscisic acid signal transduction, mRNA processing, and microarray analyses.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE3737
Omega-6 fatty acids, arachidonic acid (AA) activates PI3K signaling and induces gene expression in prostate cancer
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Essential fatty acids (FA) are not only energy-rich molecules; they are also an important component of the membrane bilayer and recently have been implicated in induction of fatty acid synthase (FAS) and other genes. Using gene chip analysis, we have found that arachidonic acid (AA), an omega-6 fatty acid, induced 11 genes that are regulated by NFkappaB. We verified gene induction by omega-6 fatty acids including COX2, IKBA, NFKB, GMCSF, IL1B, CXCL1, TNFA, IL6, LTA, IL8, PPARG, and ICAM1 using qRTPCR. PGE2 synthesis was increased within 5min of addition of AA. Analysis of upstream signal transduction showed that within 5min of FA addition, phophatidylinositol 3-kinase (PI3K) was significantly activated followed by activation of Akt at 30min. ERK1 and 2, p38, and SAPK/JNK were not phosphorylated after omega-6 FA addition. Thirty minutes after FA addition, we found a significant 3-fold increase in translocation of NFkappaB transcription factor to the nucleus. Addition of non-steroidal anti-inflammatory drug (NSAID) caused a decrease in cox-2 protein synthesis, PGE2 synthesis as well as inhibition of PI3K activation. We have previously shown that AA induced proliferation is also blocked (P<0.001) by PI3K inhibitor LY294002. LY294002 also significantly inhibited the AA induced gene expression of COX2, IL1B, GMCSF, and ICAM1. Taken together, the data suggests that AA via conversion to PGE2 plays an important role in stimulation of growth related genes and proliferation via PI3K signaling and NFkappaB translocation to the nucleus.

Publication Title

Arachidonic acid activates phosphatidylinositol 3-kinase signaling and induces gene expression in prostate cancer.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP194185
comparative RNA-seq analysis of murine lung infected with A.fumigatus
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

We report the application of RNA-seq analysis for high-throughput profiling of murine lungs infected with Aspergillus fumigatus. We compared the lung transcription of wildtype murine lungs and lungs from mice deficient in metabolic cytokine adiponectin. Overall design: Examination of 2 different mice strain and comparison of lung transcripts in response to Aspergillus fumigatus infection.

Publication Title

The Metabolic Cytokine Adiponectin Inhibits Inflammatory Lung Pathology in Invasive Aspergillosis.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE54652
A circadian gene expression atlas in mammals: Implications for biology and medicine
  • organism-icon Mus musculus
  • sample-icon 288 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

A circadian gene expression atlas in mammals: implications for biology and medicine.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE54650
A circadian gene expression atlas in mammals assayed by microarray
  • organism-icon Mus musculus
  • sample-icon 288 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

To characterize the role of the circadian clock in mouse physiology and behavior, we used RNA-seq and DNA arrays to quantify the transcriptomes of 12 mouse organs over time. We found 43% of all protein coding genes showed circadian rhythms in transcription somewhere in the body, largely in an organ-specific manner. In most organs, we noticed the expression of many oscillating genes peaked during transcriptional rush hours preceding dawn and dusk. Looking at the genomic landscape of rhythmic genes, we saw that they clustered together, were longer, and had more spliceforms than nonoscillating genes. Systems-level analysis revealed intricate rhythmic orchestration of gene pathways throughout the body. We also found oscillations in the expression of more than 1,000 known and novel noncoding RNAs (ncRNAs). Supporting their potential role in mediating clock function, ncRNAs conserved between mouse and human showed rhythmic expression in similar proportions as protein coding genes. Importantly, we also found that the majority of best-selling drugs and World Health Organization essential medicines directly target the products of rhythmic genes. Many of these drugs have short half-lives and may benefit from timed dosage. In sum, this study highlights critical, systemic, and surprising roles of the mammalian circadian clock and provides a blueprint for advancement in chronotherapy.

Publication Title

A circadian gene expression atlas in mammals: implications for biology and medicine.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE37708
Age-specific variation in immune response in Drosophila melanogaster has a genetic basis.
  • organism-icon Drosophila melanogaster
  • sample-icon 46 Downloadable Samples
  • Technology Badge Icon Affymetrix Drosophila Genome 2.0 Array (drosophila2)

Description

Immunosenescence, the age-related decline in immune system function, is a general hallmark of aging. While much is known about the cellular and physiological changes that accompany immunosenescence, we know very little about the genetic influences on this phenomenon.

Publication Title

Age-specific variation in immune response in Drosophila melanogaster has a genetic basis.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact