refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 22 results
Sort by

Filters

Technology

Platform

accession-icon GSE20436
Expression data from Gambian children with and without the clinical signs of active trachoma: U133 Plus2.0 array
  • organism-icon Homo sapiens
  • sample-icon 59 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Conjunctival samples from 60 individuals with and without the clinical signs of active trachoma were analysed on the U133 Plus 2.0 arrays. Global transcriptional changes characteristic of disease and infection phenotypes were identified. Two analysis methods found large numbers of differentially regulated genes and the existence of networks of co-expressed genes. There were signatures characteristic of the host defence response with evidence supporting infiltration of various types of leukocytes and activation of innate responses of epithelial cells. Two separate methods could classify disease and infection phenotype based on transcription signatures with 70% accuracy. These results provide an insight into the complexity of the acute response in trachoma but are able to partly explain the biology of trachoma through the identification of pathways and gene expression sets useful to future studies on chlamydial immunopathogenesis.

Publication Title

Human conjunctival transcriptome analysis reveals the prominence of innate defense in Chlamydia trachomatis infection.

Sample Metadata Fields

Sex, Age, Specimen part, Disease, Race

View Samples
accession-icon GSE65439
Two Forkhead transcription factors regulate cardiac progenitor specification by controlling the expression of receptors of the fibroblast growth factor and Wnt signaling pathways
  • organism-icon Drosophila melanogaster
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Drosophila Genome 2.0 Array (drosophila2)

Description

Cardiogenesis involves multiple biological processes acting in concert during development, a coordination achieved by the regulation of diverse cardiac genes by a finite set of transcription factors (TFs). Previous work from our laboratory identified the roles of two Forkhead TFs, Checkpoint suppressor homologue (CHES-1-like) and Jumeau (Jumu) in governing cardiac progenitor cell divisions by regulating Polo kinase activity. These TFs were also implicated in the regulation of numerous other cardiac genes. Here we show that these two Forkhead TFs play an additional and mutually redundant role in specifying the cardiac mesoderm (CM): eliminating the functions of both CHES-1-like and jumu in the same embryo results in defective hearts with missing hemisegments. Our observations indicate that this process is mediated by the Forkhead TFs regulating the fibroblast growth factor receptor Heartless (Htl) and the Wnt receptor Frizzled (Fz), both previously known to function in cardiac progenitor specification: CHES-1-like and jumu exhibit synergistic genetic interactions with htl and fz in CM specification, thereby implying function through the same genetic pathways, and transcriptionally activate the expression of both receptor-encoding genes. Furthermore, ectopic overexpression of either htl or fz in the mesoderm partially rescues the defective CM specification phenotype seen in embryos doubly homozygous for mutations in jumu and CHES-1-like. Together, these data emphasize the functional redundancy that leads to robustness in the cardiac progenitor specification process mediated by Forkhead TFs regulating the expression of signaling pathway receptors, and illustrate the pleiotropic functions of this class of TFs in different aspects of cardiogenesis.

Publication Title

Two forkhead transcription factors regulate the division of cardiac progenitor cells by a Polo-dependent pathway.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE29573
Two Forkhead transcription factors regulate the division of cardiac progenitor cells by a Polo-dependent pathway - I
  • organism-icon Drosophila melanogaster
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon Affymetrix Drosophila Genome Array (drosgenome1)

Description

The development of a complex organ requires the specification of appropriate numbers of each of its constituent cell types, as well as their proper differentiation and correct positioning relative to each other. During Drosophila cardiogenesis, all three of these processes are controlled by jumeau (jumu) and Checkpoint suppressor homologue (CHES-1-like), two genes encoding forkhead transcription factors that we discovered utilizing an integrated genetic, genomic and computational strategy for identifying novel genes expressed in the developing Drosophila heart. Both jumu and CHES-1-like are required during asymmetric cell division for the derivation of two distinct cardiac cell types from their mutual precursor, and in symmetric cell divisions that produce yet a third type of heart cell. jumu and CHES-1-like control the division of cardiac progenitors by regulating the activity of Polo, a kinase involved in multiple steps of mitosis. This pathway demonstrates how transcription factors integrate diverse developmental processes during organogenesis.

Publication Title

Two forkhead transcription factors regulate the division of cardiac progenitor cells by a Polo-dependent pathway.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE34946
Two Forkhead transcription factors regulate the division of cardiac progenitor cells by a Polo-dependent pathway - II
  • organism-icon Drosophila melanogaster
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Drosophila Genome 2.0 Array (drosophila2)

Description

The development of a complex organ requires the specification of appropriate numbers of each of its constituent cell types, as well as their proper differentiation and correct positioning relative to each other. During Drosophila cardiogenesis, all three of these processes are controlled by jumeau (jumu) and Checkpoint suppressor homologue (CHES-1-like), two genes encoding forkhead transcription factors that we discovered utilizing an integrated genetic, genomic and computational strategy for identifying novel genes expressed in the developing Drosophila heart. Both jumu and CHES-1-like are required during asymmetric cell division for the derivation of two distinct cardiac cell types from their mutual precursor, and in symmetric cell divisions that produce yet a third type of heart cell. jumu and CHES-1-like control the division of cardiac progenitors by regulating the activity of Polo, a kinase involved in multiple steps of mitosis. This pathway demonstrates how transcription factors integrate diverse developmental processes during organogenesis.

Publication Title

Two forkhead transcription factors regulate the division of cardiac progenitor cells by a Polo-dependent pathway.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE51236
Expression data from MTF mutant roots
  • organism-icon Arabidopsis thaliana
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

Mutation of MTF in Arabidopsis increases Agrobacterium-mediated transformation susceptibility. Being a putative transcription factor, different genes controlling transformation may be regulated by MTF.

Publication Title

Cytokinins secreted by Agrobacterium promote transformation by repressing a plant myb transcription factor.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE76630
Stromal-Based Signatures for the Classification of Gastric Cancer
  • organism-icon Mus musculus
  • sample-icon 98 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Stromal-Based Signatures for the Classification of Gastric Cancer.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE76628
Stromal-Based Signatures for the Classification of Gastric Cancer [part II]
  • organism-icon Mus musculus
  • sample-icon 78 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Increasing success is being achieved in the treatment of malignancies with stromal-targeted therapies, predominantly in anti-angiogenesis and immunotherapy, predominantly checkpoint inhibitors. Despite 15 years of clinical trials with anti-VEGF pathway inhibitors for cancer, we still find ourselves lacking reliable predictive biomarkers to select patients for anti-angiogenesis therapy. For the more recent immunotherapy agents, there are many approaches for patient selection under investigation. Notably, the predictive power of an Ad-VEGF-A164 mouse model to drive a stromal response with similarities to a wound healing response shows relevance for human cancer and was used to generate stromal signatures. We have developed gene signatures for 3 stromal states and leveraged the data from multiple large cohort bioinformatics studies of gastric cancer (TCGA, ACRG) to further understand how these relate to the dominant patient phenotypes identified by previous bioinformatics efforts. We have also designed multiplexed IHC assays that robustly represent the vascular and immune diversity in gastric cancer. Finally, we have used this methodology to arrive at a hypothesis of how angiogenesis and immunotherapy may fit into the experimental approaches for gastric cancer treatments.

Publication Title

Stromal-Based Signatures for the Classification of Gastric Cancer.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE76588
Stromal-Based Signatures for the Classification of Gastric Cancer [part I]
  • organism-icon Mus musculus
  • sample-icon 20 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Increasing success is being achieved in the treatment of malignancies with stromal-targeted therapies, predominantly in anti-angiogenesis and immunotherapy, predominantly checkpoint inhibitors. Despite 15 years of clinical trials with anti-VEGF pathway inhibitors for cancer, we still find ourselves lacking reliable predictive biomarkers to select patients for anti-angiogenesis therapy. For the more recent immunotherapy agents, there are many approaches for patient selection under investigation.

Publication Title

Stromal-Based Signatures for the Classification of Gastric Cancer.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE11496
Expression data from Gcn2 wild-type and knockout mouse liver perfused with or without methionine
  • organism-icon Mus musculus
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

In eukaryotes, regulation of mRNA translation enables a fast, localized and finely tuned expression of gene products. Within the translation process, the first stage of translation initiation is most rigorously modulated by the actions of eukaryotic initiation factors (eIFs) and their associated proteins. These 11 eIFs catalyze the joining of the tRNA, mRNA and rRNA into a functional translation complex. Their activity is influenced by a wide variety of extra- and intracellular signals, ranging from global, such as hormone signaling and unfolded proteins, to specific, such as single amino acid imbalance and iron deficiency. Their action is correspondingly comprehensive, in increasing or decreasing recruitment and translation of most cellular mRNAs, and specialized, in targeting translation of mRNAs with regulatory features such as a 5 terminal oligopyrimidine tract (TOP), upstream open reading frames (uORFs), or an internal ribosomal entry site (IRES). In mammals, two major pathways are linked to targeted mRNA translation. The target of rapamycin (TOR) kinase induces translation of TOP and perhaps other subsets of mRNAs, whereas a family of eIF2 kinases does so with mRNAs containing uORFs or an IRES. TOR targets translation of mRNAs that code for proteins involved in translation, an action compatible with its widely accepted role in regulating cellular growth. The four members of the eIF2 kinase family increase translation of mRNAs coding for stress response proteins such as transcription factors and chaperones. Though all four kinases act on one main substrate, eIF2, published literature demonstrates both common and unique effects by each kinase in response to its specific activating stress. This suggests that the activated eIF2 kinases regulate the translation of both a global and a specific set of mRNAs. Up to now, few studies have attempted to test such a hypothesis; none has been done in mammals.

Publication Title

eIF2alpha kinases GCN2 and PERK modulate transcription and translation of distinct sets of mRNAs in mouse liver.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE18331
A phenotype-based model for rational selection of novel targeted therapies in treating aggressive breast cancer
  • organism-icon Homo sapiens
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Treating unselected cancer patients with new drugs dilutes proof of efficacy when only a fraction of patients respond to therapy. We conducted a meta-analysis on eight primary breast cancer microarray datasets representing diverse breast cancer phenotypes. We present a high-throughput protocol which incorporates drug sensitivity signatures to guide preclinical testing for effective therapeutic agents. Specifically, we focus on drug classes currently undergoing early phase clinical testing. Our genomic and experimental results suggest that the majority of basal-like breast cancers should respond to inhibitors of the phosphatidylinositol-3-kinase pathway, and that a relatively low toxicity histone deacetylase inhibitor, valproic acid, may target aggressive breast cancers. For a subset of drugs, prediction of sensitivity associates with tumor recurrence, suggesting clinical relevance. Preclinical studies using both cell lines and patient tumors grown in 3-dimensional in vitro and orthotopic in vivo preclinical models provide an efficient and highly relevant assessment of drug sensitivity in tumor phenotypes, and validate our genomic analyses. Together, our results show that high-throughput transcriptional profiling can significantly impact drug selection for breast cancer patients. Pre-identification of patient response may not only improve therapeutic response rates, it can also assist in quickly identifying the optimal inclusion criteria for clinical trials. Our model facilitates personalized drug therapy for cancer patients and may be generalized for study of drug efficacy in other diseases.

Publication Title

A pharmacogenomic method for individualized prediction of drug sensitivity.

Sample Metadata Fields

Specimen part

View Samples

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact