refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 281 results
Sort by

Filters

Technology

Platform

accession-icon GSE25447
Jumonji C domain-containing protein 12 is a Histone H3 Lysine 27 Demethylase
  • organism-icon Arabidopsis thaliana
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Arabidopsis REF6 is a histone H3 lysine 27 demethylase.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE25444
Differential gene expression in ref6-1
  • organism-icon Arabidopsis thaliana
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

We demonstrate that REF6/JMJ12 (RELATIVE OF EARLY FLOWERING 6/Jumonji domain-containing protein 12) is an H3K27me3 and H3K27me2 demethylase. Plants overexpressing REF6/JMJ12 resemble mutants defective in H3K27me3-mediated gene silencing. Genetic interaction tests indicate that REF6/JMJ12 acts downstream of H3K27me3 methyltransferases. Moreover, loss of REF6/JMJ12 leads to ectopic and increased H3K27me3 and decreased mRNA expression of a large spectrum of genes involved in development and hormone responses to stimuli.

Publication Title

Arabidopsis REF6 is a histone H3 lysine 27 demethylase.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP044194
Transcriptome analysis of WT and ATRX KO Cast x 129 mouse ES cells
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Analysis of gene expression in WT and ATRX KO Cast x 129 Mouse ES cells Overall design: Paired end RNA-seq analysis of PolyA selected RNA and PolyA depeleted RNA from in both wildtype nd ATRX knocked out Castx129 Mouse ES Cells

Publication Title

ATRX Plays a Key Role in Maintaining Silencing at Interstitial Heterochromatic Loci and Imprinted Genes.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE49073
Gene expression from NMuMG cells overexpressing major satellite treated with TGFbeta
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Although heterochromatin is enriched with repressive traits, it is also actively transcribed, giving rise to large amounts of non-coding RNAs. Although these RNAs are responsible for the formation and maintenance of heterochromatin, little is known about how their transcription is regulated. Here we show that the Snail1 transcription factor represses pericentromeric transcription, acting through the H3K4 deaminase LOXL2. Since Snail1 plays a key role in the epithelial to mesenchymal transition (EMT), we analyzed the regulation of mouse heterochromatin transcription in this process. At the onset of EMT, one of the major structural heterochromatin proteins, HP1a, is transiently released from heterochromatin foci in a Snail1/LOXL2dependent manner during EMT, concomitantly with a down-regulation of major satellite transcription. Global transcriptome analysis indicated that ectopic expression of heterochromatin transcripts affects the transcription profile of EMT-related genes. Additionally, preventing the down-regulation of major satellite transcripts compromised the migratory and invasive behavior of mesenchymal cells. We propose that Snail1 regulates heterochromatin transcription through the histone-modifying enzyme, LOXL2, thus creating the favorable transcriptional state necessary for completing EMT.

Publication Title

Regulation of heterochromatin transcription by Snail1/LOXL2 during epithelial-to-mesenchymal transition.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE48125
Neonatal antibotic prophylaxis modulates intestinal immunity and prevents necrotizing enterocolitis in preterm neonates
  • organism-icon Sus scrofa
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Porcine Genome Array (porcine)

Description

Caesarean-delivered preterm pigs were fed 3 d of parenteral nutrition followed by 2 d of enteral formula feeding. Antibiotics (n=11) or control saline (n=13) were given twice daily from birth to tissue collection at d 5. NEC-lesions and intestinal structure, function, microbiology and immunity markers were recorded.

Publication Title

Antibiotics modulate intestinal immunity and prevent necrotizing enterocolitis in preterm neonatal piglets.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE5287
Prediction of response and survival following chemotherapy in patients with advanced bladder cancer
  • organism-icon Homo sapiens
  • sample-icon 30 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

BACKGROUND

Publication Title

Emmprin and survivin predict response and survival following cisplatin-containing chemotherapy in patients with advanced bladder cancer.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE101185
VTA and NAC labeled ribosome from mPFC
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

Projection-dependent ribosome profling from mouse mPFC.

Publication Title

Molecular and Circuit-Dynamical Identification of Top-Down Neural Mechanisms for Restraint of Reward Seeking.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE42823
Specific sequence determinants of miR-15/107 microRNA gene group targets
  • organism-icon Homo sapiens
  • sample-icon 54 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Using anti-Argonaute (anti-AGO) antibody co-immunoprecipitation, followed by microarray analyses and downstream bioinformatics, RIP-Chip experiments enable direct analyses of miRNA targets. The analyses support four major findings: (i) RIP-Chip studies correlated with total input mRNA profiling provides more comprehensive information than using either RIP-Chip or total mRNA profiling alone after miRNA transfections; (ii) new data confirm that miR-107 paralogs target coding sequence (CDS) of mRNA; (iii) biochemical and computational studies indicate that the 3 portion of miRNAs plays a role in guiding miR-103/7 to the CDS of targets; and (iv) there are major sequence-specific targeting differences between miRNAs in terms of CDS versus 3-untranslated region targeting, and stable AGO association versus mRNA knockdown. For detailed protocol and for full discussion of the results please see Nelson PT et al, Nucleic Acids Res. 2011 Oct;39(18):8163-72.

Publication Title

Specific sequence determinants of miR-15/107 microRNA gene group targets.

Sample Metadata Fields

Specimen part, Disease, Cell line

View Samples
accession-icon GSE30946
Receptor Tyrosine Kinase Activation in Infantile Fibrosarcoma/Congenital Mesoblastic Nephroma
  • organism-icon Homo sapiens
  • sample-icon 55 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

The goal of this study is to identify downstream pathways, diagnostic markers, and potential therapeutic targets for IFS/CMN.

Publication Title

Mediators of receptor tyrosine kinase activation in infantile fibrosarcoma: a Children's Oncology Group study.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP127589
Simultaneous Measurement of Transcriptional and Post-transcriptional Parameters by 3' end RNA-seq
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 26 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Cellular RNA levels are determined by transcription and decay rates, which are fundamental in understanding gene expression regulation. Measurement of these two parameters is usually performed independently, complicating analysis and introducing methodological biases that hamper direct comparison. Here, we present a simple approach of concurrent sequencing of S. cerevisiae polyA+ and polyA- RNA 3' ends to simultaneously estimate total RNA levels, transcription and decay rates from the same RNA sample. The transcription data generated correlate well with reported estimates and also reveal local RNA polymerase stalling and termination sites with high precision. Although the method by design uses brief metabolic labeling of newly synthesized RNA with 4-thiouridine, the results demonstrate that transcription estimates can also be gained from unlabeled RNA samples. These findings underscore the potential of the approach, which should be generally applicable to study a range of biological questions in diverse organisms. Overall design: RNA 3' end seq of total and 2min 4-thiouracil (4tU) labelled RNA from S. cerevisiae cells. Aliquots of RNA were directly subjected to pA+ RNA 3' end sequencing (noPap samples). A second aliquot was in vitro polyadenylated using E. coli poly(A) polymerase and ribodepleted before library preparation (xPap samples).

Publication Title

Simultaneous Measurement of Transcriptional and Post-transcriptional Parameters by 3' End RNA-Seq.

Sample Metadata Fields

Cell line, Subject

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact