refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing 9 of 9 results
Sort by

Filters

Technology

Platform

accession-icon GSE17479
Effect of auxin signaling on flg22 response
  • organism-icon Arabidopsis thaliana
  • sample-icon 45 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

Expression data after flg22 treatment on leaf discs in Col-0, 35S:AFB1 and 35S:miR393

Publication Title

The microRNA miR393 re-directs secondary metabolite biosynthesis away from camalexin and towards glucosinolates.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE17500
Effect of auxin signaling on Pseudomonas syinrgae pv tomato DC3000 response
  • organism-icon Arabidopsis thaliana
  • sample-icon 17 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

Expression data 24hrs after PstDC3000 inoculation in Col-0, 35S:AFB1 and 35S:miR393.

Publication Title

The microRNA miR393 re-directs secondary metabolite biosynthesis away from camalexin and towards glucosinolates.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE8785
Early gibberellin responses and DELLA protein direct targets in Arabidopsis
  • organism-icon Arabidopsis thaliana
  • sample-icon 22 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Global analysis of della direct targets in early gibberellin signaling in Arabidopsis.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE8741
DELLA protein direct targets in Arabidopsis
  • organism-icon Arabidopsis thaliana
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

The aim of this study is to identify early DELLA protein-responsive genes using a Dexamethasone (DEX)-inducible system. Two transgenic lines were used: one induces the expression of a dominant, gibberellin non-responsive DELLA protein (rga-delta17); the other is a control line that carries the same vector, but lacks the rga-delta17 transgene. By comparing the gene expression changes in the line that expresses the rga-delta17 protein in the presence or absence of DEX it is possible to identify putative targets of DELLA proteins. An empty vector transgenic line was included in this study to identify genes that might be regulated by the DEX inducible system that are not dependent on the DELLA protein.

Publication Title

Global analysis of della direct targets in early gibberellin signaling in Arabidopsis.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE8739
Early gibberellin responses in Arabidopsis
  • organism-icon Arabidopsis thaliana
  • sample-icon 7 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

The aim is to identify early gibberellin responsive genes in a gibberellin deficient strain such as ga1-3. Such genes are likely regulated by DELLA proteins which are master gibberellin repressors. DELLA proteins are rapidly degraded after gibberellin treatment, but their direct target genes still need to be elucidated.

Publication Title

Global analysis of della direct targets in early gibberellin signaling in Arabidopsis.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE20458
Increased leaf size: different means to an end
  • organism-icon Arabidopsis thaliana
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

The final size of plant organs such as leaves is tightly controlled by environmental and genetic factors that must spatially and temporally coordinate cell expansion and cell cycle activity. However this regulation of organ growth is still poorly understood. The aim of this study is to gain more insight in the genetic control of leaf size in Arabidopsis by performing a comparative analysis of transgenic lines that produce larger leaves under standardized environmental conditions. To this end, we selected five genes, belonging to different functional classes, that all positively affect leaf size when over-expressed: AVP1, GRF5, JAW, BRI1 and GA20OX1. We show that the increase in leaf area in these lines depends on leaf position and growth conditions and that all five lines affect leaf size differently. However, in all cases an increase in cell number is, entirely or predominantly, responsible for the leaf size enlargement. By means of analyses of hormone levels, transcriptome and metabolome we provide deeper insight in the molecular basis of the growth phenotype for the individual lines. A comparative analysis between them indicates that enhanced organ growth is governed by different, seemingly independent pathways. The analysis of transgenic lines simultaneously over-expressing two growth-enhancing genes further supports the concept that multiple pathways independently converge on organ size control in Arabidopsis.

Publication Title

Increased leaf size: different means to an end.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE20455
Increased leaf size: different means to an end (experiment 1)
  • organism-icon Arabidopsis thaliana
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

The final size of plant organs such as leaves is tightly controlled by environmental and genetic factors that must spatially and temporally coordinate cell expansion and cell cycle activity. However this regulation of organ growth is still poorly understood. The aim of this study is to gain more insight in the genetic control of leaf size in Arabidopsis by performing a comparative analysis of transgenic lines that produce larger leaves under standardized environmental conditions. To this end, we selected five genes, belonging to different functional classes, that all positively affect leaf size when over-expressed: AVP1, GRF5, JAW, BRI1 and GA20OX1. We show that the increase in leaf area in these lines depends on leaf position and growth conditions and that all five lines affect leaf size differently. However, in all cases an increase in cell number is, entirely or predominantly, responsible for the leaf size enlargement. By means of analyses of hormone levels, transcriptome and metabolome we provide deeper insight in the molecular basis of the growth phenotype for the individual lines. A comparative analysis between them indicates that enhanced organ growth is governed by different, seemingly independent pathways. The analysis of transgenic lines simultaneously over-expressing two growth-enhancing genes further supports the concept that multiple pathways independently converge on organ size control in Arabidopsis.

Publication Title

Increased leaf size: different means to an end.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE20456
Increased leaf size: different means to an end (experiment 2)
  • organism-icon Arabidopsis thaliana
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

The final size of plant organs such as leaves is tightly controlled by environmental and genetic factors that must spatially and temporally coordinate cell expansion and cell cycle activity. However this regulation of organ growth is still poorly understood. The aim of this study is to gain more insight in the genetic control of leaf size in Arabidopsis by performing a comparative analysis of transgenic lines that produce larger leaves under standardized environmental conditions. To this end, we selected five genes, belonging to different functional classes, that all positively affect leaf size when over-expressed: AVP1, GRF5, JAW, BRI1 and GA20OX1. We show that the increase in leaf area in these lines depends on leaf position and growth conditions and that all five lines affect leaf size differently. However, in all cases an increase in cell number is, entirely or predominantly, responsible for the leaf size enlargement. By means of analyses of hormone levels, transcriptome and metabolome we provide deeper insight in the molecular basis of the growth phenotype for the individual lines. A comparative analysis between them indicates that enhanced organ growth is governed by different, seemingly independent pathways. The analysis of transgenic lines simultaneously over-expressing two growth-enhancing genes further supports the concept that multiple pathways independently converge on organ size control in Arabidopsis.

Publication Title

Increased leaf size: different means to an end.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE20457
Increased leaf size: different means to an end (experiment 3)
  • organism-icon Arabidopsis thaliana
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

The final size of plant organs such as leaves is tightly controlled by environmental and genetic factors that must spatially and temporally coordinate cell expansion and cell cycle activity. However this regulation of organ growth is still poorly understood. The aim of this study is to gain more insight in the genetic control of leaf size in Arabidopsis by performing a comparative analysis of transgenic lines that produce larger leaves under standardized environmental conditions. To this end, we selected five genes, belonging to different functional classes, that all positively affect leaf size when over-expressed: AVP1, GRF5, JAW, BRI1 and GA20OX1. We show that the increase in leaf area in these lines depends on leaf position and growth conditions and that all five lines affect leaf size differently. However, in all cases an increase in cell number is, entirely or predominantly, responsible for the leaf size enlargement. By means of analyses of hormone levels, transcriptome and metabolome we provide deeper insight in the molecular basis of the growth phenotype for the individual lines. A comparative analysis between them indicates that enhanced organ growth is governed by different, seemingly independent pathways. The analysis of transgenic lines simultaneously over-expressing two growth-enhancing genes further supports the concept that multiple pathways independently converge on organ size control in Arabidopsis.

Publication Title

Increased leaf size: different means to an end.

Sample Metadata Fields

Specimen part

View Samples
Didn't see a related experiment?

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact