In the present study, we investigated the effect of CBM 588 on lifespan and multiple-stress resistance using Caenorhabditis elegans as a model animal. When adult C. elegans were fed a standard diet of Escherichia coli OP50 or CBM 588, the lifespan of the animals fed CBM 588 was significantly longer than that of animals fed OP50. Moreover, the worms fed CBM 588 were more resistant to certain stressors, including infections with pathogenic bacteria, UV irradiation, and the metal stressor Cu2+. CBM 588 failed to extend the lifespan of the daf-2/IR, daf-16/FOXO and skn-1/Nrf2 mutants. Transcriptional profiling comparing CBM 588-fed and control-fed animals suggested that DAF-16-dependent class II genes were regulated by CBM 588. In conclusion, CBM 588 extends the lifespan of C. elegans probably through regulation of the insulin/IGF-1 signaling (IIS) pathway and the Nrf2 transcription factor, and CBM 588 improves resistance to several stressors in C. elegans. Overall design: Transcriptional profiling of eight-day-old worms that were fed OP50 or CBM 588 for five days, by deep sequencing, using Illumina HiSeq.
<i>Clostridium butyricum</i> MIYAIRI 588 Increases the Lifespan and Multiple-Stress Resistance of <i>Caenorhabditis elegans</i>.
Sex, Cell line, Treatment, Subject
View SamplesZinc-finger genes Fezf1 and Fezf2 encode transcriptional repressors. Fezf1 and Fezf2 are expressed in the early neural stem/progenitor cells and control neuronal differentiation in mouse dorsal telencephalon.
Zinc finger genes Fezf1 and Fezf2 control neuronal differentiation by repressing Hes5 expression in the forebrain.
Specimen part
View SamplesWe identify perhexiline, a small molecule inhibitor of mitochondrial carnitine palmitoyltransferase-1, as a HES1-signature antagonist drug with robust antileukemic activity against NOTCH1 induced leukemias in vitro and in vivo. Overall design: RNA-Seq from CUTLL1 cell lines treated with Perhexiline or vehicle for 3 days
Therapeutic targeting of HES1 transcriptional programs in T-ALL.
No sample metadata fields
View SamplesCD4 T cell help is critical for both the generation and maintenance of germinal centers, and T follicular helper (TFH) cells are the CD4 T cell subset required for this process. SAP (SH2D1A) expression in CD4 T cells is essential for germinal center development. However, SAP-deficient mice have only a moderate defect in TFH differentiation as defined by common TFH surface markers. CXCR5+ TFH cells are found within the germinal center as well as along the boundary regions of T/B cell zones. Here we show that germinal center associated T cells (GC TFH) can be identified by their co-expression of CXCR5 and the GL7 epitope, allowing for phenotypic and functional analysis of TFH and GC TFH populations. Here we show GC TFH are a functionally discrete subset of further polarized TFH cells, with enhanced B cell help capacity and a specialized ability to produce IL-4 in a TH2-independent manner. Strikingly, SAP-deficient mice have an absence of the GC TFH subset and SAP- TFH are defective in IL-4 and IL-21 production. We further demonstrate that SLAM (Slamf1, CD150), a surface receptor that utilizes SAP signaling, is specifically required for IL-4 production by GC TFH. GC TFH cells require IL-4 and IL-21 production for optimal help to B cells. These data illustrate complexities of SAP-dependent SLAM family receptor signaling, revealing a prominent role for SLAM receptor ligation in IL-4 production by germinal center CD4 T cells but not in TFH and GC TFH differentiation.
Germinal center T follicular helper cell IL-4 production is dependent on signaling lymphocytic activation molecule receptor (CD150).
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
The Msx1 Homeoprotein Recruits Polycomb to the Nuclear Periphery during Development.
Specimen part, Cell line
View SamplesCD4 T cell help is critical for both the generation and maintenance of germinal centers, and T follicular helper (TFH) cells are the CD4 T cell subset required for this process. SAP (SH2D1A) expression in CD4 T cells is essential for germinal center development. However, SAP-deficient mice have only a moderate defect in TFH differentiation as defined by common TFH surface markers. CXCR5+ TFH cells are found within the germinal center as well as along the boundary regions of T/B cell zones. Here we show that germinal center associated T cells (GC TFH) can be identified by their co-expression of CXCR5 and the GL7 epitope, allowing for phenotypic and functional analysis of TFH and GC TFH populations. Here we show GC TFH are a functionally discrete subset of further polarized TFH cells, with enhanced B cell help capacity and a specialized ability to produce IL-4 in a TH2-independent manner. Strikingly, SAP-deficient mice have an absence of the GC TFH subset and SAP- TFH are defective in IL-4 and IL-21 production. We further demonstrate that SLAM (Slamf1, CD150), a surface receptor that utilizes SAP signaling, is specifically required for IL-4 production by GC TFH. GC TFH cells require IL-4 and IL-21 production for optimal help to B cells. These data illustrate complexities of SAP-dependent SLAM family receptor signaling, revealing a prominent role for SLAM receptor ligation in IL-4 production by germinal center CD4 T cells but not in TFH and GC TFH differentiation.
Germinal center T follicular helper cell IL-4 production is dependent on signaling lymphocytic activation molecule receptor (CD150).
No sample metadata fields
View SamplesLigands activation of RXR modulate host antivarl response. We used microarray to determine if 9cRA could regulate the antiviral gene expression in LPS- and polyI:C triggered RAW264.7 cells.
Retinoid X receptor α attenuates host antiviral response by suppressing type I interferon.
Cell line, Treatment
View SamplesGene expression analysis of freshly isolated CD14+ human monocytes and monocytes cultured in the presence or absence of interferon (IFN) -gamma for 24 h and then stimulated with Pam3Cys, a Toll-like receptor (TLR) 2 ligand, for 6 h. Results provide insight into mechanisms by which IFN-gamma reprograms early macrophage differentiation and subsequent response to TLR ligands.
Integrated regulation of Toll-like receptor responses by Notch and interferon-gamma pathways.
No sample metadata fields
View SamplesTp80 is a novel antiviral compound. Antiviral mechanism of Tp80 is the inhibition of the viral genome replication through the recoverly of GPx2 expression downregulated by HCV infection.
Retinoid derivative Tp80 exhibits anti-hepatitis C virus activity through restoration of GI-GPx expression.
Specimen part, Cell line, Treatment
View SamplesIn the developing brain, neural progenitor cells (NPCs) switch the differentiation competency via changing gene expression profiles that are governed partly by epigenetic control such as histone modification, although the precise mechanism is unknown. Here we found that ESET/Setdb1/KMT1E, a histone H3 Lys-9 (H3K9) methyltransferase, was highly expressed at early stages of brain development but down-regulated over time, and that ablation of ESET led to decreased H3K9 trimethylation and misregulation of genes, resulting in severe brain defects and early lethality. In the mutant brain, endogenous retrotransposons were derepressed, and non-neural gene expression was activated. Furthermore, early neurogenesis was most severely impaired, while astrocyte formation was enhanced. We conclude that there is an epigenetic role of ESET in temporal and tissue-specific gene regulation in the developing brain.
Essential roles of the histone methyltransferase ESET in the epigenetic control of neural progenitor cells during development.
Sex, Specimen part
View Samples