refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 43 results
Sort by

Filters

Technology

Platform

accession-icon SRP017843
Transcriptional profiles of PA1 teratoma cells transfected by RIPK1, RIPK2, RIPK3, or RIPK4
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer IIx

Description

RIPK4 but not the related kinases RIPK1, RIPK2, and RIPK3 caused similar transcriptional changes to Wnt3a. Overall design: PA1 cells were transfected by 8ug RIPK1, RIPK2, RIPK3, or RIPK4 for 48h, RNA were extracted and sequenced.

Publication Title

Phosphorylation of Dishevelled by protein kinase RIPK4 regulates Wnt signaling.

Sample Metadata Fields

Cell line, Subject

View Samples
accession-icon GSE33846
Expression data of hepatocytes isolated from chimeric mouse livers repopulated with human hepatocytes and from normal human livers
  • organism-icon Mus musculus, Homo sapiens
  • sample-icon 29 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

We generated chimeric mice with livers that were predominantly repopulated with human hepatocytes. Hepatocytes were isolated from the chimeric mouse livers and their gene expressions were compared with hepatocytes isolated from normal human livers . Cluster and principal components analyses showed that gene expression profiles of hepatocytes from the chimeric mice and those from normal human livers were extremely closed.

Publication Title

Morphological and microarray analyses of human hepatocytes from xenogeneic host livers.

Sample Metadata Fields

Sex, Age, Specimen part, Race

View Samples
accession-icon GSE18674
Gene expression profile of Human tissues and cells
  • organism-icon Homo sapiens
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

We performed microarray experiments to examine gene expression in human tissues. This data was used for comparison with our humanized mouse study (GEO ID GSE33846) and threshold determination of our tiling array data (GEO ID GSE18490, public in the near future).

Publication Title

Morphological and microarray analyses of human hepatocytes from xenogeneic host livers.

Sample Metadata Fields

Specimen part, Cell line, Race

View Samples
accession-icon GSE12198
Primary NKcells vs. NKAES-derived NK cells vs. NKcells stimulated by low/high dose IL2 after 7days of culture
  • organism-icon Homo sapiens
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Transcriptional profiling of NKAES-derived NK cells after 7 days of culture compared to primary human NK cells and NK cells stimulated by low or high dose IL2 after 7 days of culture.

Publication Title

Expansion of highly cytotoxic human natural killer cells for cancer cell therapy.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE72875
Purification of functional human ES/iPSC-derived midbrain dopaminergic progenitors using LRTM1
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Human induced pluripotent stem cells (iPSCs) can provide a promising source of midbrain dopaminergic (mDA) neurons for cell replacement therapy for Parkinson's disease (PD). However, iPSC-derived donor cells inevitably contain tumorigenic or inappropriate cells. To eliminate these unwanted cells, cell sorting using antibodies for specific markers such as CORIN or ALCAM have been developed, but neither marker is specific for ventral midbrain. Here, we employed a double-selection strategy for cells expressing both CORIN and LMX1A::GFP and report a novel cell surface marker to enrich mDA progenitors, LRTM1. When transplanted into 6-OHDA-lesioned rats, human iPSC-derived LRTM1+ cells survived and differentiated into mDA neurons in vivo, resulting in significant improvement in motor behavior without tumor formation. In addition, LRTM1+ cells exhibited efficient survival of mDA neurons in the brain of an MPTP-treated monkey. Thus, LRTM1 can provide a powerful tool for efficient and safe cell therapy for PD patients.

Publication Title

Purification of functional human ES and iPSC-derived midbrain dopaminergic progenitors using LRTM1.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP181957
Molecular basis of neuronal subtype bias introduced by proneural factors Ascl1 and Neurog2 (single-cell RNA-seq)
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

Basic helix-loop-helix (bHLH) proneural transcription factors (TFs) Ascl1 and Neurog2 are integral to the development of the nervous system. Here, we investigated the molecular mechanisms by which Ascl1 and Neurog2 control the acquisition of generic neuronal fate and impose neuronal subtype identity. Using direct neuronal programming of embryonic stem cells, we found that Ascl1 and Neurog2 regulate distinct targets by binding to largely different sets of sites. Their divergent binding pattern is not determined by the previous chromatin state but distinguished by specific E-box enrichments which reflect the DNA sequence preference of the bHLH domain. The divergent Ascl1 and Neurog2 binding patterns result in distinct chromatin accessibility and enhancer activity landscapes that shape the binding and activity of downstream TFs during neuronal specification. Our findings suggest that proneural factors contribute to neuronal diversity by differentially altering the chromatin landscapes that shape the binding of neuronally expressed TFs. Overall design: Single-cell RNA-seq was used to characterize gene expression in mixed populations of mES cells containing induced expression of either Ascl1 or Neurog2.

Publication Title

Proneural factors Ascl1 and Neurog2 contribute to neuronal subtype identities by establishing distinct chromatin landscapes.

Sample Metadata Fields

Specimen part, Treatment, Subject

View Samples
accession-icon GSE43378
Expression data from glioma patients
  • organism-icon Homo sapiens
  • sample-icon 43 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

We used microarrays to select the genes associated glioma patients survival.

Publication Title

Gene expression signature-based prognostic risk score in patients with glioblastoma.

Sample Metadata Fields

Sex, Age, Disease, Disease stage

View Samples
accession-icon SRP074757
A multi-step transcriptional and chromatin cascade underlies motor neuron programming (single-cell RNA-seq)
  • organism-icon Mus musculus
  • sample-icon 768 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Direct programming via the overexpression of transcription factors (TFs) aims to control cell fate at a precision that will be instrumental for clinical applications. However, direct programming of terminal fates remains an obscure process. Taking advantage of the rapid and uniquely efficient programming of spinal motor neurons by overexpression of Ngn2, Isl1 and Lhx3, we have characterized gene expression, chromatin and transcription factor binding time-course dynamics during complete motor neuron programming. Our studies point to a surprisingly dynamic programming process. Promoter chromatin and expression analysis reveals at least three distinct phases of gene activation, while programming factor binding shifts from one set of targets to another, controlling regulatory region activity and gene expression. Furthermore, our evidence suggest that the enhancers and genes activated in the final stage of motor neuron processing are dependent on the combined activities of Isl1 and Lhx3 factors with Ebf and Onecut TFs that are themselves activated midway through the programming process. Our results suggest an unexpected multi-stage model of motor neuron programming in which the programming TFs require activation of a set of intermediate regulators before they complete the programming process. Overall design: Gene expression was characterized by single-cell RNA-seq during the direct programming of ES cells into motor neurons using over-expression of Ngn2-Isl1-Lhx3 programming factors.

Publication Title

A Multi-step Transcriptional and Chromatin State Cascade Underlies Motor Neuron Programming from Embryonic Stem Cells.

Sample Metadata Fields

Specimen part, Cell line, Treatment, Subject

View Samples
accession-icon SRP073703
A multi-step transcriptional and chromatin cascade underlies motor neuron programming (RNA-Seq)
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Direct programming via the overexpression of transcription factors (TFs) aims to control cell fate at a precision that will be instrumental for clinical applications. However, direct programming of terminal fates remains an obscure process. Taking advantage of the rapid and uniquely efficient programming of spinal motor neurons by overexpression of Ngn2, Isl1 and Lhx3, we have characterized gene expression, chromatin and transcription factor binding time-course dynamics during complete motor neuron programming. Our studies point to a surprisingly dynamic programming process. Promoter chromatin and expression analysis reveals at least three distinct phases of gene activation, while programming factor binding shifts from one set of targets to another, controlling regulatory region activity and gene expression. Furthermore, our evidence suggest that the enhancers and genes activated in the final stage of motor neuron processing are dependent on the combined activities of Isl1 and Lhx3 factors with Ebf and Onecut TFs that are themselves activated midway through the programming process. Our results suggest an unexpected multi-stage model of motor neuron programming in which the programming TFs require activation of a set of intermediate regulators before they complete the programming process. Overall design: For bulk cell RNA-seq analysis, cells were collected at different time points after NIL induction and RNA isolated using TRIzol LS (Life Technologies) followed by purification using Qiagen RNAeasy kit

Publication Title

A Multi-step Transcriptional and Chromatin State Cascade Underlies Motor Neuron Programming from Embryonic Stem Cells.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE145367
GeneChip Expression Array
  • organism-icon Rattus norvegicus
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Gene expression analysis to compare control cells and sorted cells

Publication Title

Identification of two major autoantigens negatively regulating endothelial activation in Takayasu arteritis.

Sample Metadata Fields

Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact