Defects in mitochondrial metabolism have been increasingly linked with age-onset protein misfolding diseases such as Alzheimers, Parkinsons, and Huntingtons. In response to protein folding stress, compartment-specific unfolded protein responses (UPRs) within the endoplasmic reticulum, mitochondria, and cytosol work in parallel to ensure cellular protein homeostasis. While perturbation of individual compartments can make other compartments more susceptible to protein stress, the cellular conditions that trigger cross-communication between the individual UPRs remain poorly understood.
Lipid Biosynthesis Coordinates a Mitochondrial-to-Cytosolic Stress Response.
No sample metadata fields
View SamplesWe used arrays to examine the overall transcriptional differences between WT K-12 E. coli, and EHEC 86-24 and their corresponding QseD (yjiE) mutants.
The LysR-type transcriptional regulator QseD alters type three secretion in enterohemorrhagic Escherichia coli and motility in K-12 Escherichia coli.
No sample metadata fields
View SamplesThe extent of transcriptional diversity in mouse NPCs is likely to be influenced by a variety of unexamined factors that include programmed cell death, genomic mosaicism as well as a variety of “environmental” influences such as changes in exposure to signaling lipids. We therefore used scRNA-seq to assess a cohort of cortical NPCs from an embryonic mouse. We demonstrate that PAGODA (Pathway And Geneset OverDispersion Analysis) effectively recovers the known neuroanatomical and functional organization of NPCs, identifying multiple aspects of transcriptional heterogeneity within the developing mouse cortex that are difficult to discern by the existing heterogeneity analysis approaches. Overall design: Examination of mouse NPC transcriptional heterogeneity via single cell RNA-seq
Characterizing transcriptional heterogeneity through pathway and gene set overdispersion analysis.
Specimen part, Cell line, Subject
View SamplesLIN28 is a conserved RNA binding protein implicated in pluripotency, reprogramming and oncogenesis. Previously shown to act primarily by blocking let-7 microRNA (miRNA) biogenesis, here we elucidate distinct roles of LIN28 regulation via its direct messenger RNA (mRNA) targets. Through cross-linking and immunoprecipitation coupled with high-throughput sequencing (CLIP-seq) in human embryonic stem cells and somatic cells expressing exogenous LIN28, we have defined discrete LIN28 binding sites in a quarter of human transcripts. These sites revealed that LIN28 binds to GGAGA sequences enriched within loop structures in mRNAs, reminiscent of its interaction with let-7 miRNA precursors. Among LIN28 mRNA targets, we found evidence for LIN28 autoregulation and also direct but differing effects on the protein abundance of splicing regulators in somatic and pluripotent stem cells. Splicing-sensitive microarrays demonstrated that exogenous LIN28 expression causes widespread downstream alternative splicing changes. These findings identify important regulatory functions of LIN28 via direct mRNA interactions. Overall design: CLIP-seq for LIN28-V5 in stable human Flp-In-293 cells, and LIN28 in hES cells; strand-specific mRNA-seq for uninfected, control KD, and LIN28 KD human H9 ES cells; and strand-specific smallRNA-seq for uninfected, control KD, and LIN28 KD human H9 ES cells.
LIN28 binds messenger RNAs at GGAGA motifs and regulates splicing factor abundance.
Cell line, Treatment, Subject
View SamplesAlveolar macrophages are the first line of defense against pathogens in the lungs of all mammalian species and therefore may constitute an appropriate therapeutic target cell in the treatment and prevention of opportunistic airway infections. Analysis of alveolar macrophages from several species has revealed a unique cellular phenotype and transcriptome, presumably linked to their distinct airway environment and function in host defense. The current study extends these findings to the horse.
Comparative transcriptome analysis of equine alveolar macrophages.
Treatment
View SamplesMating triggers physiological and behavioral changes in females.
Mating induces an immune response and developmental switch in the Drosophila oviduct.
No sample metadata fields
View SamplesMouse bone marrow-derived macrophages (BMDM) grown in macrophage colony-stimulating factor (CSF-1) have been used widely in studies of macrophage biology and the response to toll-like receptor agonists. We investigated whether similar cells could be derived from the domestic pig. Cultivation of pig bone marrow cells for 5-7 days in presence of rhCSF-1 generated a pure population of BMDM that expressed the usual macrophage markers (CD14, CD16, CD163, CD172a), are potent phagocytic cells and produced tumor necrosis factor (TNF) in response to lipopolysaccharide (LPS). Bone marrow cells could be stored frozen and thawed, providing a renewable resource.
Pig bone marrow-derived macrophages resemble human macrophages in their response to bacterial lipopolysaccharide.
Sex, Specimen part, Time
View SamplesRheumatoid arthritis (RA) leads to progressive destruction of articular structures. Despite recent progress in controlling inflammation and pain, little cartilage repair has yet been observed. This in vitro study aims to determine the role of chondrocytes in RA-related cartilage destruction and antirheumatic drug-related regenerative processes. Human chondrocytes were three-dimensionally cultured in alginate beads. To determine the RA-induced gene expression pattern, human chondrocytes were stimulated with supernatant of RA synovial fibroblasts (RASF) and normal donor synovial fibroblasts (NDSF), respectively. To examine antirheumatic drug response signatures, human chondrocytes were stimulated with supernatant of RASF that have been treated with disease-modifying antirheumatic drugs (DMARD; azathioprine, sodium aurothiomalate, chloroquine phosphate, methotrexate), non-steroidal anti-inflammatory drugs (NSAID; piroxicam, diclofenac) or steroidal anti-inflammatory drugs (SAID; methylprednisolone, prednisolone). Genome-wide expression profiling with oligonucleotide microarrays was used to determine differentially expressed genes. Real-time RT-PCR and ELISA were performed for validation of microarray data. Following antirheumatic treatment, microarray analysis disclosed a reverted expression of 94 RA-induced chondrocyte genes involved in inflammation/NF-B signalling, cytokine/chemokine activity, immune response, proliferation/differentiation and matrix remodelling. Hierarchical clustering analysis showed that treatment of RASF with the DMARD azathioprine, gold sodium thiomalate and methotrexate resulted in chondrocyte gene expression signatures that were closely related to the healthy pattern. Treatment with the SAID methylprednisolone and prednisolone strongly reverted the RA-related chondrocyte gene expression, in particular the expression of genes involved in inflammation/NF-B and cytokine/chemokine activity. The NSAID piroxicam and diclofenac and the DMARD chloroquine phosphate had only moderate to marginal effects. Pathway analysis determined major mechanisms of drug action, for example pathways of cytokine-cytokine receptor interaction, TGF-/TLR/Jak-STAT signalling and ECM-receptor interaction were targeted. This in vitro study provides a comprehensive molecular insight into the antirheumatic drug response signatures in human chondrocytes, thereby revealing potential molecular targets, pathways and mechanisms of drug action involved in chondrocyte regeneration. Thus, the present study may contribute to the development of novel therapeutic chondro-protective compounds and strategies.
Antirheumatic drug response signatures in human chondrocytes: potential molecular targets to stimulate cartilage regeneration.
No sample metadata fields
View SamplesTo study the gene expression profile of salivary glands with varying degrees of inflammation in Sjogren's and non Sjogren's patients
Chitinases in the salivary glands and circulation of patients with Sjögren's syndrome: macrophage harbingers of disease severity.
Specimen part, Disease
View SamplesWe have studied the expression profile of 3D cultured human chondrocytes that were stimulated with supernatant of synovial fibroblasts derived from a RA patient (RASF=HSE cell line) and from a normal donor (NDSF=K4IM cell line), respectively. For this purpose, passage 2 human chondrocytes were cultured for 14 days in alginate beads and subsequently stimulated for 48 hours with supernatant of RASF and NDSF. Baseline expression was determined of unstimulated chondrocytes. Differential genome-wide microarray analysis of RASF and NDSF stimulated chondrocytes disclosed a distinct expression profile related to cartilage destruction involving marker genes of inflammation (COX-2), NF-kappa B signaling pathway (TLR2), cytokines/chemokines and receptors (CXCL1-3, CCL20, CXCL8, CXCR4, IL-6, IL-1beta), matrix degradation (MMP-10, MMP-12) and suppressed matrix synthesis (COMP). Thus, transcriptome profiling of RASF and NDSF stimulated chondrocytes revealed a disturbed catabolic-anabolic homeostasis of chondrocyte function. This study provides a comprehensive insight into the molecular regulatory processes induced in human chondrocytes during RA-related cartilage destruction.
Key regulatory molecules of cartilage destruction in rheumatoid arthritis: an in vitro study.
No sample metadata fields
View Samples