Partial induced pluripotent cells (iPSCs) are cell lines strayed from normal route from somatic cells to iPSCs and are immortalized. Mouse partial iPSCs are able to convert to real iPSCs by the exposure to 2i condition using MAPK and GSK3? inhibitors. However, the molecular mechanisms of this conversion are totally not known. Our piggyback vector mediated genome-wide screen revealed that Cnot2, one of core components of Ccr4-Not complex participates in this conversion. Subsequent analyses revealed other core components, i.e., Cnot1 and Cnot3 and Trim28 which is known to extensively share genomic binding sites with Cnot3 contribute to this conversion as well. Our bioinformatics analyses indicate that the major role of these factors in the conversion is the down-regulation of developmental genes in partial iPSCs.
Identification of Ccr4-not complex components as regulators of transition from partial to genuine induced pluripotent stem cells.
Sex, Specimen part
View SamplesNucleostemin (NS) gene is known to be expressed in stem cells in general including embryonic stem cells (ESCs). Previous knockdown and knockout studies have demonstrated that NS is important for the preservation of their self-renewality and high levels of pluripotent marker gene expression in mouse ESCs. In this study, we demonstrate that the forced expression of Nanog or Esrrb, but not other pluripotency factors, made NS expression dispensable in mouse ESCs. DNA microarray data deposited here underscored the notion that both Nanog and Esrrb could rather faithfully counteract the alteration of gene expression profile caused by NS expression ablation in ESCs.
Forced expression of Nanog or Esrrb preserves the ESC status in the absence of nucleostemin expression.
Sex, Specimen part
View SamplesAblation of expression of the Max gene encoding a Myc protein partner in ES cells provoked two major phenomena, i.e. loss of pluripotency and apoptotic cell death. We found that nicotinamide (Nam) significantly alleviates these Max expression ablation-coupled phenotypes in ES cells. To see the alleviation effect of Nam on the overall expression profile of Max-null ES cells whose Max expression is controlled by the tet-off system, we eliminated Max expression by adding doxycycline (Dox) in the presence of Nam.
Sirt1, p53, and p38(MAPK) are crucial regulators of detrimental phenotypes of embryonic stem cells with Max expression ablation.
Sex, Specimen part, Treatment
View SamplesGlioblastomas show heterogeneous histological features. These distinct phenotypic states are thought to be associated with the presence of glioma stem cells (GSCs), which are highly tumorigenic and self-renewing sub-population of tumor cells that have different functional characteristics. To investigate gene expression including lncRNA (long non-coding RNA) in GSC, we have performed high-throughput RNA-sequencing (RNA-seq) experiment using Illumina GAIIx. Overall design: Profiles of gene expression including lncRNA in GSC were generated by RNA-seq using Illumina GAIIx.
Targeting the Notch-regulated non-coding RNA TUG1 for glioma treatment.
No sample metadata fields
View SamplesWe explored the relationship between Myc activity and PI3K signaling in ESCs. Our data demonstrate that Myc and PI3K signaling function cooperatively for supporting pluripotent property of ESCs. Moreover, our data demonstrate that exposure of ESCs to 2i condition render both Myc and PI3K dispensable for preserving ESC status.
Functional compensation between Myc and PI3K signaling supports self-renewal of embryonic stem cells.
Sex, Specimen part
View SamplesWe found that a H3K4 specific histone methyltransferase MLL1, a mammalian homologue of Drosophila trithorax, is essential for circadian transcription. MLL1 is in a complex with CLOCK:BMAL1 and contributes to their rhythmic recruitment to circadian promoters and cyclic H3K4 tri-metylation. To analyze the function of MLL1 on circadian gene regulation, we performed comparative microarray analysis of global gene expression levels in WT and MLL1-deficient MEF, at two different circadian time points (CT18 and CT30). This analysis identified several genes whose expression levels were remarkably changed between CT18 and CT30 in WT and MLL1-KO MEF. Typical clock-regulated genes such as Per2, Per3, Bmal1, or Dbp were found to be changing in WT but not in MLL1-KO MEFs.
The histone methyltransferase MLL1 permits the oscillation of circadian gene expression.
Specimen part, Time
View SamplesOligodendrocytes (OLs) and myelin are critical for normal brain function and they have been implicated in neurodegeneration. Human neuroimaging studies have demonstrated that alterations in axons and myelin occur early in Alzheimer's Disease (AD) course. However, the molecular mechanism underlying the role of OLs in AD remains largely unknown. In this study, we systematically interrogated OL-enriched gene networks constructed from large-scale genomic, transcriptomic, and proteomic data in human AD postmortem brain samples. These robust OL networks were highly enriched for genes associated with AD risk variants, including BIN1. We corroborated the structure of the AD OL coexpression and gene-gene interaction networks through ablation of genes identified as key drivers of the networks, including UGT8, CNP, MYRF, PLP1, NPC1, and NDGR1. Perturbations of these key drivers not only caused dysregulation in their associated network neighborhoods, but also mimicked pathways of gene expression dysregulation seen in human AD postmortem brain samples. In particular, the OL subnetwork controlled by the AD risk gene PSEN1 was strongly dysregulated in AD, suggesting a potential role of PSEN1 in disrupting the myelination pathway towards the onset of AD. In summary, this study built and systematically validated the first comprehensive molecular blueprint of OL dysregulation in AD, and identified key OL- and myelination-related genes and networks as potential candidate targets for the future development of AD therapies. Overall design: The mouse knockout models have been previously described for each of Ugt8 (Coetzee et al., 1996), Cnp (Lappe-Siefke et al., 2003), and Plp1 (Klugmann et al., 1997). For each of the two conditions studied (control and homozygous knockout mice), five mice of either sex were sacrificed at postnatal day 20 and brains were flashed-frozen until analysis. The frontal cortex (FC) and cerebellum (CBM) were dissected out and individually processed. RNA was isolated using Trizol reagent and processed using Ribo-Zero rRNA removal. RNA-sequencing was performed using the Illumina HiSeq2000 with 100 nucleotide paired-end reads. RNA-sequencing reads were mapped to the mouse genome (mm10, UCSC assembly) using Bowtie (version 2.2.3.0), TopHat (version 2.0.11), and SamTools (version 0.1.19.0) using a read length of 100. Reads were converted to counts at the gene level using HTSeq on the BAM files from TopHat2 using the UCSC known genes data set.
Multiscale network modeling of oligodendrocytes reveals molecular components of myelin dysregulation in Alzheimer's disease.
Specimen part, Subject
View SamplesIn this study, we used a cross-species network approach to uncover nitrogen (N)-regulated network modules conserved across a model and a crop species. By translating gene network knowledge from the data-rich model Arabidopsis (Arabidopsis thaliana, ecotype Columbia-0) to a crop, rice (Oryza sativa spp. japonica (Nipponbare)), we identified evolutionarily conserved N-regulatory modules as targets for translational studies to improve N use efficiency in transgenic plants.
Cross-Species Network Analysis Uncovers Conserved Nitrogen-Regulated Network Modules in Rice.
Age, Specimen part
View SamplesRearrangements involving the NUP98 gene resulting in fusions to several partner genes occur in acute myeloid leukemia and myelodysplastic syndromes. This study demonstrates that the second FG repeat domain of the NUP98 moiety of the NUP98-HOXA9 fusion protein is important for its cell immortalization and leukemogenesis activities. We demonstrate that NUP98-HOXA9 interacts with MLL via this FG repeat domain and that, in the absence of MLL, NUP98-HOXA9-induced cell immortalization and leukemogenesis are severely inhibited. Molecular analyses indicate that MLL is important for the recruitment of NUP98-HOXA9 to the HOXA locus and for NUP98-HOXA9-induced HOXA gene expression. Our data indicate that MLL is crucial for NUP98-HOXA9 leukemia initiation.
MLL is essential for NUP98-HOXA9-induced leukemia.
No sample metadata fields
View SamplesTissue structure of the lymph node (LN) is supported by the network of stromal cells of mesenchymal origin, which is suggested to contribute to various immunological processes.
Autotaxin produced by stromal cells promotes LFA-1-independent and Rho-dependent interstitial T cell motility in the lymph node paracortex.
Specimen part, Cell line
View Samples