refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 92 results
Sort by

Filters

Technology

Platform

accession-icon SRP064115
Dual function of Med12 in PRC1-dependent gene repression and ncRNA-mediated transcriptional activation
  • organism-icon Mus musculus
  • sample-icon 24 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Mediator is regarded a general co-activator of RNA-Polymerase II dependent transcription but not much is known about its function and regulation in mouse pluripotent embryonic stem cells (mESC). One means of controlling Mediator function is provided by binding of the Cdk8 module (Med12, Cdk8, Ccnc and Med13) to Mediator. Here we report that the Cdk8 module subunit Med12 operates together with PRC1 to silence developmental key genes in the pluripotent state. At the molecular level, PRC1 is required to assemble ncRNA containing Med12-Mediator complexes at promoters of repressed genes. In the course of cellular differentiation the H2A-ubiquitin binding protein Zrf1 abrogates PRC1-Med12 binding and facilitates the recruitment of Cdk8 into Mediator. Remodeling of the Mediator-associated protein complex converts Mediator into a transcriptional enhancer that mediates ncRNA-dependent activation of Polycomb target genes Overall design: RNAseq of pluripotent (control, shNMC, shRing1b, shMed12, shCdk8, shZrf1) and early differentiating (control, shNMC, shMed12, shCdk8, shZrf1) stem cells in triplicates. Control would be normal E14TG2A mESCs. shNMC refers to E14TG2A cells stably transfected with a short hairpin that has no mammalian targets (Non Mammalian Control). All the other samples are indeed stably transfected with short hairpins against the indicated genes.

Publication Title

Dual role of Med12 in PRC1-dependent gene repression and ncRNA-mediated transcriptional activation.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon SRP091988
6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 4 is essential for p53-null cancer cells
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

The bifunctional enzyme 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase-4 (PFKFB4) controls metabolic flux through allosteric regulation of glycolysis. Here we show that p53 regulates the expression of PFKFB4 and that p53-deficient cancer cells are highly dependent on the function of this enzyme. We found that p53 down-regulates PFKFB4 expression by binding to its promoter and mediating transcriptional repression via histone deacetylases. Depletion of PFKFB4 from p53 deficient cancer cells increased levels of the allosteric regulator fructose 2,6-bisphophate, leading to increased glycolytic activity but decreased routing of metabolites through the oxidative arm of the pentose phosphate pathway. PFKFB4 was also required to support the synthesis and regeneration of nicotinamide adenine dinucleotide phosphate (NADPH) in p53 deficient cancer cells. Moreover, depletion of PFKFB4 attenuated cellular biosynthetic activity and resulted in the accumulation of reactive oxygen species and cell death in the absence of p53. Finally, silencing of PFKFB4 induced apoptosis in p53 deficient cancer cells in vivo and interfered with tumour growth. These results demonstrate that PFKFB4 is essential to support anabolic metabolism in p53-deficient cancer cells and suggest that inhibition of PFKFB4 could be an effective strategy for cancer treatment. Overall design: Gene expression changes in HCT116 p53+/+ and p53-/- xenograft tumours after PFKFB4 silencing

Publication Title

6-Phosphofructo-2-kinase/fructose-2,6-biphosphatase 4 is essential for p53-null cancer cells.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon SRP075283
Development and differentiation of early innate lymphoid progenitors
  • organism-icon Mus musculus
  • sample-icon 19 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Early innate lymphoid progenitors (EILP) have recently been identified in the mouse adult bone marrow as a multipotential progenitor population committed to ILC lineages, but their relationship with other described ILC progenitors is still unclear. In this study, we examine the progenitor-successor relationships between EILP, IL-7R+ common lymphoid progenitors (ALP), and ILC precursors (ILCp). Bioinformatic, phenotypical, functional, and genetic approaches collectively establish EILP as an intermediate progenitor between ALP and ILCp. Our work additionally provides new candidate regulators of ILC development and clearly defines the stage of requirement of transcription factors key for early ILC development. Overall design: transcriptional profiling of early ILC progenitors (EILP, ILCp), and common lymphoid progenitors (ALP) was performed by RNA sequencing

Publication Title

Development and differentiation of early innate lymphoid progenitors.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE107246
Identification of INSL4-regulated gene program in non-small cell lung cancer cells
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Transcriptome Array 2.0 (hta20)

Description

Gene expression profiling was performed to identify INSL4-regulated gene program in non-small cell lung cancer A549 cells. We compared gene expression profiles of A549 cells transduced with lentiviruses expressing scrambled shRNA control or INSL4 shRNA. Our analysis revealed INSL4-regulated gene program that are involved in the regulation of cell cycle, growth and survival.

Publication Title

Role of INSL4 Signaling in Sustaining the Growth and Viability of LKB1-Inactivated Lung Cancer.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE81960
Identification of LINC00473-regulated transcriptional program in human mucoepidermoid carcinoma
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Transcriptome Array 2.0 (hta20)

Description

Gene expression profiling was performed on control and long intergenic non-protein coding RNA 473 (LINC00473)-depleted human mucoepidermoid carcinoma H3118 cells, and differentially expressed genes after LINC00473 depletion were identified.

Publication Title

CRTC1-MAML2 fusion-induced lncRNA LINC00473 expression maintains the growth and survival of human mucoepidermoid carcinoma cells.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon SRP063669
Human stem cell based models of neuronal migration provide insight into neurological disease pathogenesis and potential treatment
  • organism-icon Homo sapiens
  • sample-icon 7 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

Neuronal migration defects (NMDs) are among the most common and severe brain abnormalities in humans. Lack of disease models in mice or in human cells has hampered the identification of underlying mechanisms. From patients with severe NMDs we generated iPSCs then differentiated neural progenitor cells (NPCs). On artificial extracellular matrix, patient-derived neuronal cells showed defective migration and impaired neurite outgrowth. From a cohort of 107 families with NMDs, sequencing identified two homozygous C-terminal truncating mutations in CTNNA2, encoding aN-catenin, one of three paralogues of the a-catenin family, involved in epithelial integrity and cell polarity. Patient-derived or CRISPR-targeted CTNNA2- mutant neuronal cells showed defective migration and neurite stability. Recombinant aN-catenin was sufficient to bundle purified actin and to suppress the actin-branching activity of ARP2/3. Small molecule inhibitors of ARP2/3 rescued the CTNNA2 neurite defect. Thus, disease modeling in human cells could be used to understand NMD pathogenesis and develop treatments for associated disorders. Overall design: 2 biological replicates per individual (2 iPSC clone differentiations), excluding 1263A, which has one sample

Publication Title

Biallelic loss of human CTNNA2, encoding αN-catenin, leads to ARP2/3 complex overactivity and disordered cortical neuronal migration.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP075699
Identification of a distinct IL-10 producing subset of innate lymphoid type-2 effector cells with regulatory potential
  • organism-icon Mus musculus
  • sample-icon 15 Downloadable Samples
  • Technology Badge IconNextSeq 500, Ion Torrent Proton

Description

ILC210 represent a distinct effector population of ILC2 cells that have regulatory potential Overall design: comparison between ILC2 cells with IL-33 stimulation or not on transcriptome change

Publication Title

Alternative activation generates IL-10 producing type 2 innate lymphoid cells.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon SRP054249
Innate lymphoid cell development requires TOX-dependent generation of a common ILC progenitor
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIon Torrent Proton

Description

Subtypes of innate lymphoid cells (ILC), defined by effector function and transcription factor expression, have recently been identified. In the adult, ILC derive from common lymphoid progenitors in bone marrow, although transcriptional regulation of the developmental pathways involved remains poorly defined. TOX is required for development of lymphoid tissue inducer cells, a type of ILC3 required for lymph node organogenesis, and NK cells, a type of ILC1. We show here that production of multiple ILC lineages requires TOX, as a result of TOX-dependent development of common ILC progenitors. Comparative transcriptome analysis demonstrated failure to induce various aspects of the ILC gene program in the absence of TOX, implicating this nuclear factor as a key early determinant of ILC lineage specification. Overall design: TOX KO vs. wild tyype

Publication Title

The development of innate lymphoid cells requires TOX-dependent generation of a common innate lymphoid cell progenitor.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE103769
One year weight-loss intervention in healthy obese individuals at three time-points
  • organism-icon Homo sapiens
  • sample-icon 57 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2), Illumina HumanMethylation450 BeadChip (HumanMethylation450_15017482)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Subcutaneous adipose tissue gene expression and DNA methylation respond to both short- and long-term weight loss.

Sample Metadata Fields

Sex, Specimen part, Time

View Samples
accession-icon GSE103766
Expression data from adipose tissue of 19 healthy obese individuals at three time-points during one-year weightloss intervention
  • organism-icon Homo sapiens
  • sample-icon 57 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

To understand the temporal changes occurring in adipose tissue gene expression during a one-year weightloss intervention, adipose tissue biopsies were collected from 19 healthy obese individuals at three time points.

Publication Title

Subcutaneous adipose tissue gene expression and DNA methylation respond to both short- and long-term weight loss.

Sample Metadata Fields

Sex, Specimen part, Time

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact