refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 465 results
Sort by

Filters

Technology

Platform

accession-icon SRP114712
Electrophilic stress induced by dimethyl itaconate regulates IkB-zeta-mediated inflammatory responses
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Interplay between metabolic state of the cell and its ability to undergo immunological activation has been recently recognized as a treasure chest of novel fundamental regulatory principles. Itaconate, and its membrane permeable derivative dimethyl itaconate (DI) were recently shown to selectively inhibit subset of cytokines during macrophage activation (e.g. Il1b, il6, Il12b but not TNF), yet the precise mechanism of this effect remained unclear. We find that selectivity of DI action stems from the inhibitory effects of electrophilic stress exerted by DI on IkB-zeta protein translation, leading to selective control of the secondary wave of Nfkb-signaling. Mechanistically, DI leads to glutathione depletion and subsequent activation of both Nrf2-dependent and Nrf2-independent stress responses. We find that IkB-zeta regulation is carried out in Nrf2-independent manner, and identify Atf3 as a key mediator of DI effects on IkB-zeta/IL6. This inhibitory effect is conserved across species and cell types, as evident from inhibition of IkB-zeta production in activating human monocytes and IL-17A stimulated keratinocytes of both human and mice. Finally, DI administration in vivo ameliorated IL17/IkB-zeta-driven skin pathology in the mouse model of psoriasis, highlighting therapeutic potential of this regulatory pathway. Overall design: Bone marrow-derived macrophages (BMDMs) from WT and Nrf2–/– mice were derived in 7 days in MCSF supplemented complete RPMI. Some samples cells were stimulated with 250 uM DimethylItaconate(DI) for 12 hours prior to collection for RNA-seq.

Publication Title

Electrophilic properties of itaconate and derivatives regulate the IκBζ-ATF3 inflammatory axis.

Sample Metadata Fields

Specimen part, Cell line, Treatment, Subject

View Samples
accession-icon GSE57751
Sugar-dependent gene expression in xylose grown A. thaliana cell suspension culture
  • organism-icon Arabidopsis thaliana
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

Sugars modulate expression of hundreds of genes in plants. Previous studies on sugar signaling, using intact plants or plant tissues, were hampered by tissue heterogeneity, uneven sugar transport and/or inter-conversions of the applied sugars. This, in turn, could obscure the identity of a specific sugar that acts as a signal affecting expression of given gene in a given tissue or cell-type. To bypass those biases, we have developed a novel biological system, based on stem-cell-like Arabidopsis suspension culture. The cells were grown in a hormone-free medium and were sustained on xylose as the only carbon source. The functional genomics approach was used to identify sugar responsive genes, which rapidly (within 1 h) respond specifically to low concentration (1 mM) of glucose, fructose and/or sucrose.

Publication Title

Functional dissection of sugar signals affecting gene expression in Arabidopsis thaliana.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE4324
Sex Differences in Response to Plasmodium chabaudi Infection: Involvement of Gonadal Steroids
  • organism-icon Mus musculus
  • sample-icon 46 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Expression 430A Array (moe430a)

Description

The goal of this study was to examine whether immune responses to Plasmodium chabaudi infection differ between the sexes and are altered by the presence of gonadal steroids. Gonadally-intact males were more likely than intact females to die following P. chabaudi infection, exhibit slower recovery from infection-associated weight loss, hypothermia, and anemia, have reduced IFN-associated gene expression and IFN production during peak parasitemia, and produce less antibody during the recovery phase of infection. Gonadectomy of male and female mice altered these sex-associated differences, suggesting that sex steroid hormone, in particular androgens and estrogens, may modulate immune responses to infection.

Publication Title

Involvement of gonadal steroids and gamma interferon in sex differences in response to blood-stage malaria infection.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE49629
Large-scale hypomethylated blocks associated with Epstein-Barr virus-induced B-cell immortalization
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Large-scale hypomethylated blocks associated with Epstein-Barr virus-induced B-cell immortalization.

Sample Metadata Fields

Specimen part, Time

View Samples
accession-icon GSE49628
Large-scale hypomethylated blocks associated with Epstein-Barr virus-induced B-cell immortalization [Expression Array]
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

To determine what DNA methylation and gene expression changes occur following EBV transformation. B-cells were isolated from 3 donors. Resting, CD40 activated and EBV transfromed cells from each donor was analyzed. Each sample was assayed using Affymetrix expression arrays and whole genome bisulfite sequenicng. Additional time points during transformation and activation were sequenced as well, but not assayed for expression.

Publication Title

Large-scale hypomethylated blocks associated with Epstein-Barr virus-induced B-cell immortalization.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE14051
Expression signatures and cytogenetic aberrations in HPV16 E6, E7 and E6/E7-positive immortalized human epithelial cells
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Identification of genetic/cytogenetic alterations and differentially expressed cellular genes in HPV16 E6, E7 and E6/E7 positive human foreskin keratinocytes

Publication Title

Complementation of non-tumorigenicity of HPV18-positive cervical carcinoma cells involves differential mRNA expression of cellular genes including potential tumor suppressor genes on chromosome 11q13.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE14052
Differentially expressed cellular genes in non-tumorigenic and tumorigenic HPV18 positive HeLa x fibroblast hybrid cells
  • organism-icon Homo sapiens
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Identification of genes differentially expressed in tumorigenic compared to non-tumorigenic, HPV18 positive cells

Publication Title

Complementation of non-tumorigenicity of HPV18-positive cervical carcinoma cells involves differential mRNA expression of cellular genes including potential tumor suppressor genes on chromosome 11q13.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE13878
Widespread regulation of gene expression by the histone acetyltransferase dTip60
  • organism-icon Drosophila melanogaster
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Drosophila Genome 2.0 Array (drosophila2)

Description

We used microarrays to detail the global gene expression changes following RNAi knock-down of dTip60 in Drosophila SL2 cells

Publication Title

Widespread regulation of gene expression in the Drosophila genome by the histone acetyltransferase dTip60.

Sample Metadata Fields

Cell line

View Samples
accession-icon SRP072507
A mechanism of resistance to gefitinib mediated by cellular reprogramming and the acquisition of an FGF2-FGFR1 autocrine growth loop
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer IIx

Description

Despite initial and often dramatic responses of epidermal growth factor receptor (EGFR)-addicted lung tumors to the EGFR-specific tyrosine kinase inhibitors (TKIs), gefitinib and erlotinib, nearly all develop resistance and relapse. To explore novel mechanisms mediating acquired resistance, we employed non-small-cell lung cancer (NSCLC) cell lines bearing activating mutations in EGFR and rendered them resistant to EGFR-specific TKIs through chronic adaptation in tissue culture. In addition to previously observed resistance mechanisms including EGFR-T790M ''gate-keeper'' mutations and MET amplification, a subset of the seven chronically adapted NSCLC cell lines including HCC4006, HCC2279 and H1650 cells exhibited marked induction of fibroblast growth factor (FGF) 2 and FGF receptor 1 (FGFR1) mRNA and protein. Also, adaptation to EGFR-specific TKIs was accompanied by an epithelial to mesenchymal transition (EMT) as assessed by changes in CDH1, VIM, ZEB1 and ZEB2 expression and altered growth properties in Matrigel. In adapted cell lines exhibiting increased FGF2 and FGFR1 expression, measures of growth and signaling, but not EMT, were blocked by FGFR-specific TKIs, an FGF-ligand trap and FGFR1 silencing with RNAi. In parental HCC4006 cells, cell growth was strongly inhibited by gefitinib, although drug-resistant clones progress within 10 days. Combined treatment with gefitinib and AZD4547, an FGFR-specific TKI, prevented the outgrowth of drug-resistant clones. Thus, induction of FGF2 and FGFR1 following chronic adaptation to EGFR-specific TKIs provides a novel autocrine receptor tyrosine kinase-driven bypass pathway in a subset of lung cancer cell lines that are initially sensitive to EGFR-specific TKIs. The findings support FGFR-specific TKIs as potentially valuable additions to existing targeted therapeutic strategies with EGFR-specific TKIs to prevent or delay acquired resistance in EGFR-driven NSCLC. Overall design: Examination of mRNA levels in DMSO and gefitinib-resistant cultures of HCC4006 and HCC827. Each group has two replicates.

Publication Title

A mechanism of resistance to gefitinib mediated by cellular reprogramming and the acquisition of an FGF2-FGFR1 autocrine growth loop.

Sample Metadata Fields

Specimen part, Cell line, Treatment, Subject

View Samples
accession-icon GSE55448
Carbon monoxide metabolism is essential for circadian transcription and dynamics
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Circadian clocks are cell-autonomous oscillators regulating daily rhythms in a wide range of physiological, metabolic and behavioral processes. Conversely, metabolic signals such as redox state, NAD+/NADH and AMP/ADP ratios or heme feed back to and modulate circadian mechanisms to optimize energy utilization across the 24-hour cycle. We show that the signaling molecule carbon monoxide (CO) generated by rhythmic heme degradation is required for normal circadian rhythms as well as circadian metabolic outputs.

Publication Title

Reciprocal regulation of carbon monoxide metabolism and the circadian clock.

Sample Metadata Fields

Sex, Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact