refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 405 results
Sort by

Filters

Technology

Platform

accession-icon GSE72435
Expression data from C57BL/6 mouse bone-marrow derived macrophages
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

Given the dearth of new antibiotics, host-directed therapies (HDTs) are especially desirable. Since IFN-gamma (IFN) plays a central role in host resistance to intracellular bacteria, including Mycobacterium tuberculosis, we searched for small molecules to augment the IFN response in macrophages. Using a novel screen we identified a compound belonging to the rocaglate family(CMLD009433) that synergize with a sub-threshold concentration of IFN to enhance macrophage activation.

Publication Title

Fine-tuning of macrophage activation using synthetic rocaglate derivatives.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE58096
The transcriptomic responses of THP1 human monocyte-like cells expressing SP110b to interferon gamma stimulation
  • organism-icon Homo sapiens
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

SP110b is an interferon (IFN)-induced nuclear protein and may function as a transcriptional co-activator/repressor. IFN activates monocytes/macrophages thereby mediating inflammation. However, uncontrolled activation induces monocyte/macrophage cell death, which may cause immunopathology. We have demonstrated that SP110b expression prevented IFN-mediated monocyte/macrophage cell death.

Publication Title

SP110b Controls Host Immunity and Susceptibility to Tuberculosis.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE42803
Expression data from dsDNA-stimulated mouse embryonic fibroblasts
  • organism-icon Mus musculus
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Transfection of dsDNA into many mammalian cell types indues the production of type I interferons and interferon-stimulated genes. We performed an siRNA screen to identify genes involved in this innate immune response, and identified Abcf1.

Publication Title

Identification of regulators of the innate immune response to cytosolic DNA and retroviral infection by an integrative approach.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE42802
Expression data from IFNbeta-stimulated 293T cells
  • organism-icon Homo sapiens
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

We used microarrays to determine which genes are upregulated by IFNbeta stimulation in 293T cells.

Publication Title

Identification of regulators of the innate immune response to cytosolic DNA and retroviral infection by an integrative approach.

Sample Metadata Fields

Specimen part, Cell line, Treatment

View Samples
accession-icon GSE15617
Uncovering the Arabidopsis thaliana nectary transcriptome: nectary and reference tissues
  • organism-icon Arabidopsis thaliana
  • sample-icon 58 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

Many flowering plants attract pollinators by offering a reward of floral nectar. Remarkably, the molecular events involved in the development of nectaries, the organs that produce nectar, as well as the synthesis and secretion of nectar itself, are poorly understood. Indeed, to date, no genes have been shown to directly affect the de novo production or quality of floral nectar. To address this gap in knowledge, the ATH1 Affymetrix GeneChip array was used to systematically investigate the Arabidopsis nectary transcriptome to identify genes and pathways potentially involved in nectar production. In this study, we identified a large number of genes differentially expressed between secretory lateral nectaries and non-secretory median nectary tissues, as well as between mature lateral nectaries (post-anthessis) and immature lateral nectary tissue (pre-anthesis).

Publication Title

Uncovering the Arabidopsis thaliana nectary transcriptome: investigation of differential gene expression in floral nectariferous tissues.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE15601
Uncovering the Arabidopsis thaliana nectary transcriptome
  • organism-icon Arabidopsis thaliana
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

Many flowering plants attract pollinators by offering a reward of floral nectar. Remarkably, the molecular events involved in the development of nectaries, the organs that produce nectar, as well as the synthesis and secretion of nectar itself, are poorly understood. Indeed, to date, no genes have been shown to directly affect the de novo production or quality of floral nectar. To address this gap in knowledge, the ATH1 Affymetrix GeneChip array was used to systematically investigate the Arabidopsis nectary transcriptome to identify genes and pathways potentially involved in nectar production. In this study, we identified a large number of genes differentially expressed between secretory lateral nectaries and non-secretory median nectary tissues, as well as between mature lateral nectaries (post-anthessis) and immature lateral nectary tissue (pre-anthesis).

Publication Title

Uncovering the Arabidopsis thaliana nectary transcriptome: investigation of differential gene expression in floral nectariferous tissues.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP069872
Uncoupling X chromosome number from sex determination separates contribution of sex and X dose to sex-biased gene expression in C. elegans
  • organism-icon Caenorhabditis elegans
  • sample-icon 15 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

The difference in X chromosome copy number creates a potential difference in X chromosomal gene expression between males and females. In many animals, dosage compensation mechanisms equalize X chromosome expression between sexes. Yet, X chromosome is also enriched for sex-biased genes due to differences in the evolutionary history of the X and autosomes. The manner in which dosage compensation and sex-biased gene expression exist on the X chromosome remains an open question. Most studies compare gene expression between two sexes, which combines expression differences due to X chromosome number (dose) and sex. Here, we uncoupled the effects of sex and X dose in C. elegans and determined how each process affects expression of the X chromosome compared to autosomes. We found that in the soma, sex-biased expression on the X chromosome is almost entirely due to sex because the dosage compensation complex (DCC) effectively compensates for the X dose difference between sexes. In the germline where the DCC is not present, X chromosome copy number contributes to hermaphrodite-biased gene expression. These results suggest that X dose contributes to sex-biased gene expression based on the level of dosage compensation in different tissues and developmental stages. Overall design: RNA-Seq profiles of C. elegans XO hermaphrodite and XX male L3 larvae and adults

Publication Title

Untangling the Contributions of Sex-Specific Gene Regulation and X-Chromosome Dosage to Sex-Biased Gene Expression in Caenorhabditis elegans.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon SRP149311
Studying the genetic heterogeneity in mouse dopamine neurons
  • organism-icon Mus musculus
  • sample-icon 384 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Midbrain dopamine neurons project to numerous targets throughout the brain to modulate various behaviors and brain states. Within this small population of neurons exists significant heterogeneity based on physiology, circuitry, and disease susceptibility. Recent studies have shown that dopamine neurons can be subdivided based on gene expression; however, the extent to which genetic markers represent functionally relevant dopaminergic subpopulations has not been fully explored. Here we performed single-cell RNA-sequencing of mouse dopamine neurons and validated studies showing that Neurod6 and Grp are selective markers for dopaminergic subpopulations. Using a combination of multiplex fluorescent in situ hybridization, retrograde labeling, and electrophysiology in mice of both sexes, we defined the anatomy, projection targets, physiological properties, and disease vulnerability of dopamine neurons based on Grp and/or Neurod6 expression. We found that the combinatorial expression of Grp and Neurod6 defines dopaminergic subpopulations with unique features. Grp/Neurod6 dopamine neurons reside in the ventromedial VTA, send projections to the medial shell of the nucleus accumbens, and have noncanonical physiological properties. Grp/Neurod6- DA neurons are found in the VTA as well as in the ventromedial portion of the SNc, where they project selectively to the dorsomedial striatum. Grp-/Neurod6 DA neurons represent a smaller VTA subpopulation, which is preferentially spared in a 6-OHDA model of Parkinson's disease. Together, our work provides detailed characterization of Neurod6 and Grp expression in the midbrain and generates new insights into how these markers define functionally relevant dopaminergic subpopulations with distinct projection patterns, physiology, and disease vulnerability. Overall design: We collected a total of 384 neurons from 8 different p26-p34 DAT-Cre::Ai9 mice (6 male 2 female) to isolate DA neurons. RNA was captured from each samples neurons on separate fluidigm chips then all samples were pooled before sequencing.

Publication Title

Combinatorial Expression of <i>Grp</i> and <i>Neurod6</i> Defines Dopamine Neuron Populations with Distinct Projection Patterns and Disease Vulnerability.

Sample Metadata Fields

Sex, Specimen part, Cell line, Subject

View Samples
accession-icon SRP136021
Parabiosis and single-cell RNA-Sequencing reveal a limited contribution of monocytes to myofibroblasts in kidney fibrosis
  • organism-icon Mus musculus
  • sample-icon 384 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Fibrosis is the common final pathway of virtually all chronic injury to the kidney. While it is well accepted that myofibroblasts are the scar-producing cells in the kidney, their cellular origin is still hotly debated. The relative contribution of proximal tubular epithelium and circulating cells including mesenchymal stem cells, macrophages and fibrocytes to the myofibroblast pool remains highly controversial. Using inducible genetic fate tracing of proximal tubular epithelium we confirm that proximal tubule does not contribute to the myofibroblast pool. However, in parabiosis models in which one parabiont is genetically labeled and the other is unlabeled and undergoes kidney fibrosis, we demonstrate that a small fraction of genetically labeled renal myofibroblasts derive from the circulation. Single cell RNA-Sequencing confirms this finding but indicates that these cells are circulating monocytes, express few extracellular matrix or other myofibroblast genes and do express many proinflammatory cytokines. We conclude that this small circulating myofibroblast progenitor population contributes to renal fibrosis by paracrine rather than direct mechanisms. Overall design: Single cell RNA-seq was performed on FACS-sorted PDGFRB+CD45- and PDGFRB+CD45+ cell populations

Publication Title

Parabiosis and single-cell RNA sequencing reveal a limited contribution of monocytes to myofibroblasts in kidney fibrosis.

Sample Metadata Fields

Age, Subject

View Samples
accession-icon SRP147923
Human blastocysts of normal and abnormal karyotypes display distinct transcriptome profiles: an analysis of every mono and trisomy
  • organism-icon Homo sapiens
  • sample-icon 99 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Characterization of the transcriptome of normal and abnormal embryos. Overall design: Gene expression profiling of every mono and trisomy.

Publication Title

Human blastocysts of normal and abnormal karyotypes display distinct transcriptome profiles.

Sample Metadata Fields

Specimen part, Subject

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact