In deceased donor kidney transplantation, acute kidney injury (AKI) prioir to surgery is a major determinant of delayed graft function (DGF), but AKI is histologically silent and difficult to assess. We hypothesized that a molecular measurement of AKI would add power to conventional risk assessments to predict the early poor allograft function at first week post transplantation.
Comparing molecular assessment of implantation biopsies with histologic and demographic risk assessment.
Specimen part
View SamplesIPH-926 is an anticancer drug-resistant tumor cell line derived from a chemo-refractory human infiltrating lobular breast cancer (ILBC). IPH-926 ILBC cells were subjected to gene expression profiling using an Affymetrix HG U133 Plus 2.0 array.
ABCB1/MDR1 contributes to the anticancer drug-resistant phenotype of IPH-926 human lobular breast cancer cells.
Specimen part, Cell line
View SamplesHuman solid tumors contain rare cancer side population (SP) cells, which expel the fluorescencent dye H33342 and display cancer stem cell characteristics. Transcriptional profiling of cancer SP cells isolated by H33342 fluorescence analysis is a newly emerging approach to discover cancer stem cell markers and aberrant differentiation pathways. Using Affymetrix expression microarrays this study investigated differential gene expression between SP and non-SP (NSP) cells isolated from the CAL-51 human mammary carcinoma cell line.
Down-regulation of the fetal stem cell factor SOX17 by H33342: a mechanism responsible for differential gene expression in breast cancer side population cells.
Specimen part
View SamplesMicroarray analysis of human kidneys with acute kidney injury (AKI) has been limited because such kidneys are seldom biopsied. However, all kidney transplants experience AKI, and early kidney transplants without rejection are an excellent model for human AKI: they are screened to exclude chronic kidney disease, frequently biopsied, and have extensive follow-up. We used histopathology and microarrays to compare indication biopsies from 28 transplants with AKI to 11 pristine protocol biopsies of stable transplants. Kidneys with AKI showed increased expression of 394 injury-repair response associated transcripts, including many known epithelial injury molecules (e.g. ITGB6, LCN2), tissue remodeling molecules (e.g. VCAN), and inflammation molecules (S100A8, ITGB3). Many other genes also predict the phenotype, depending on statistical filtering rules, including AKI biomarkers as HAVCR1 and IL18. Most mouse orthologs of the top injury-repair transcripts were increased in published mouse AKI models. Pathway analysis of the injury-repair transcripts revealed similarities to cancer, development, and cell movement. The injury-repair transcript score AKI kidneys correlated with reduced function, future recovery, brain death, and need for dialysis, but not future graft loss. In contrast, histologic features of "acute tubular injury" did not correlate with function or with the molecular changes. Thus the injury-repair associated transcripts represent a massive coordinate injury-repair response of kidney parenchyma to AKI, similar to mouse AKI models, and provide an objective measure for assessing the severity of AKI in kidney biopsies and validation for the use of many AKI biomarkers.
Molecular phenotypes of acute kidney injury in kidney transplants.
Specimen part, Disease
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Cellular Differentiation of Human Monocytes Is Regulated by Time-Dependent Interleukin-4 Signaling and the Transcriptional Regulator NCOR2.
Specimen part, Subject
View SamplesWhole transcriptome profiling (Illumina Microarray) of human ex vivo lymphocytes and monocytes, as well as of human monocyte-derived cells generated in vitro by activating CD14+ monocytes with MCSF, GMCSF or the combination of GMCSF and IL4
Cellular Differentiation of Human Monocytes Is Regulated by Time-Dependent Interleukin-4 Signaling and the Transcriptional Regulator NCOR2.
Specimen part
View SamplesWhole transcriptome profiling (RNA-Seq) of a time kinetics experiment containing human monocyte-derived cells, which were activated with IL4 either directly at the start of the culture, or at different hours after an initial activation with GMCSF alone. Cells being activated solely with GMCSF were added as controls Overall design: CD14+ monocytes were FACS-sorted from blood of human healthy donors and later activated in vitro with either GMCSF alone for 72 hours to obtain Mo-GMCSF[IL4 (0h)] cells as controls, with the combination of GMCSF and IL4 for 72 hours or 144 hours to obtain Mo-GMCSF[IL4 (0-72h)] or Mo-GMCSF[IL4 (0-144h)] cells, respectively, or with first GMCSF and then with the combination of GMCSF and IL4 for different durations. For the latter, monocytes were first activated with GMCSF for either 12, 24, 48 or 72 hours, and then with GMCSF plus IL4 until a total activation time of 144 hours. This resulted in Mo-GMCSF[IL4 (12-144h)], Mo-GMCSF[IL4 (24-144h)] , Mo-GMCSF[IL4 (48-144h)] and Mo-GMCSF[IL4 (72-144h)] cells, respectively.
Cellular Differentiation of Human Monocytes Is Regulated by Time-Dependent Interleukin-4 Signaling and the Transcriptional Regulator NCOR2.
Specimen part, Subject
View SamplesWhole transcriptome profiling (RNA-Seq) was performed on human Mo-GMCSF[IL4 (0-72h)] cells with either NCOR2 being knocked down or corresponding WT cells Overall design: CD14+ monocytes were FACS-sorted from blood of human healthy donors and later activated in vitro with the combination of GMCSF and IL4 for 72h to obtain Mo-GMCSF[IL4 (0-72h)] cells. During the last 24 hours of activation, either siRNAs targeting NCOR2 or scrambled RNAs were added to obtain NCOR2 knock down cells and corresponding WT cells, respectively
Cellular Differentiation of Human Monocytes Is Regulated by Time-Dependent Interleukin-4 Signaling and the Transcriptional Regulator NCOR2.
Specimen part, Subject
View SamplesIn the present study, we studied chronic HCV patients who responded to IFN-based therapy as evidenced by absence of HCV RNA at the end of treatment, and focused on two issues that have not received much attention. Firstly, we evaluated whether specific genes or gene expression patterns in blood were able to distinguish responder patients with a viral relapse from responder patients who remained virus-negative after cessation of treatment. We found that chronic HCV patients who were sustained responders and relapsers to IFN-based therapy showed comparable baseline clinical parameters and immune composition in blood. However, at baseline, the gene expression profiles of a set of 18 genes predicted treatment outcome with an accuracy of 94%. Secondly, we examined whether patients with successful therapy-induced clearance of HCV still exhibited gene expression patterns characteristic for HCV, or whether normalization of their transcriptome was observed. We observed that the relatively high expression of IFN-stimulated genes (ISG) in chronic HCV patients prior to therapy was reduced after successful IFN-based antiviral therapy (at 24 weeks follow-up). These ISG included CXCL10, OAS1, IFI6, DDX60, TRIM5 and STAT1. In addition, 1428 differentially expressed non-ISG genes were identified in paired pre- and post-treatment samples from sustained responders, which included genes involved in TGF- signaling, apoptosis, autophagy, and nucleic acid and protein metabolism. Interestingly, 1424 genes were identified with altered expression in responder patients after viral eradication in comparison to normal expression levels in healthy individuals. Additionally, aberrant expression of a subset of these genes, including IL-32, IL-16, CCND3 and RASSF1, was also observed at baseline. Our findings indicate that successful antiviral therapy of chronic HCV patients does not lead to normalization of their blood transcriptional signature. The altered transcriptional activity may reflect HCV-induced liver damage in previously infected individuals.
Gene expression profiling to predict and assess the consequences of therapy-induced virus eradication in chronic hepatitis C virus infection.
Sex, Specimen part, Disease, Race
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Characterization of genomic imbalances in diffuse large B-cell lymphoma by detailed SNP-chip analysis.
Sex, Age
View Samples