In addition to satisfying the metabolic demands of cells, mitochondrial metabolism helps regulate immune cell function. To date, such cell-intrinsic metabolic-immunologic cross-talk has only been described operating in cells of the immune system. Here we show that epidermal cells utilize fatty acid -oxidation to fuel their contribution to the immune response during cutaneous inflammation. By live imaging metabolic and immunological processes within intact zebrafish embryos during cutaneous inflammation, we uncover a mechanism where elevated -oxidation-fueled mitochondria-derived reactive oxygen species within epidermal cells helps guide matrix metalloproteinase-driven leukocyte recruitment. This mechanism requires the activity of a zebrafish homolog of the mammalian mitochondrial enzyme, Immunoresponsive gene 1. This study describes the first example of metabolic reprogramming operating within a non-immune cell type to help control its contribution to the immune response. Targeting of this metabolic-immunologic interface within keratinocytes may prove useful in treating inflammatory dermatoses.
Epidermal cells help coordinate leukocyte migration during inflammation through fatty acid-fuelled matrix metalloproteinase production.
Specimen part, Treatment
View SamplesThe root apex is an important section of the plant root, involved in environmental sensing and cellular development. Analyzing the gene profile of root apex in diverse environments is important and challenging, especially when the samples are limiting and precious, such as in spaceflight. The feasibility of using tiny root sections for transcriptome analysis was examined in this study.To understand the gene expression profiles of the root apex, Arabidopsis thaliana Col-0 roots were sectioned into Zone-I (0.5 mm, root cap and meristematic zone) and Zone-II (1.5 mm, transition, elongation and growth terminating zone). Gene expression was analyzed using microarray and RNA seq.Both the techniques, arrays and RNA-Seq identified 4180 common genes as differentially expressed (with > two-fold changes) between the zones. In addition, 771 unique genes and 19 novel TARs were identified by RNA-Seq as differentially expressed which were not detected in the arrays. Single root tip zones can be used for full transcriptome analysis; further, the root apex zones are functionally very distinct from each other. RNA-Seq provided novel information about the transcripts compared to the arrays. These data will help optimize transcriptome techniques for dealing with small, rare samples. Overall design: Arabidopsis thaliana var. Columbia (COL-0) seedlings were grown on sterile solid media plates containing 0.5 % phytagel. The plates were vertically placed in growth chambers with continuous light (80-100 µmol m -2) at a constant temperature of 19° C. Eight day old seedlings were harvested into RNA-later solution in a 50 mL centrifuge tubes and stored at -20 °C freezer. The root tips were dissected into zone-I: 0.5mm from the tip including the root cap and root division zones, and zone-II: 1.5mm sections including root elongation and root hair zone. Microarray and sequencing experiments were performed.
Comparing RNA-Seq and microarray gene expression data in two zones of the <i>Arabidopsis</i> root apex relevant to spaceflight.
Age, Specimen part, Subject
View SamplesA growing body of evidence suggests that the vasoactive peptides endothelins (ETs) and their receptors (primarily the ETB receptor) are contributors to neurodegeneration in glaucoma. However, ETs actions in retinal ganglion cells (RGCs) are not fully understood. The purpose of this study was to determine ETs effects on gene expression in primary RGCs.
Endothelin-Mediated Changes in Gene Expression in Isolated Purified Rat Retinal Ganglion Cells.
Specimen part
View SamplesGenome-wide transcriptome analysis was carried out in root tissue of Arabidopsis seedlings treated with gold (Au) as Chloroauric acid (HAuCl4). This study demonstrated remarkable changes in root transcriptome within the 12 h exposure. Most of the genes differentially expressed were related to glutathione binding, methylations, secondary metabolism, sugar metabolism, ABA, ethylene, auxin related signalling, transport and signal-transduction pathways.
Genome wide transcriptome analysis reveals ABA mediated response in Arabidopsis during gold (AuCl(-) 4) treatment.
Specimen part, Treatment
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Comparing RNA-Seq and microarray gene expression data in two zones of the <i>Arabidopsis</i> root apex relevant to spaceflight.
Age, Specimen part
View SamplesGlobal analysis of brassinosteroid (BR)-mediated gene expression under abiotic stress identifies BR associated mechanisms of stress tolerance, and new stress-related genes
Gene expression and functional analyses in brassinosteroid-mediated stress tolerance.
Age, Specimen part
View SamplesThe production of functional mRNA involves multiple steps including transcription initiation, elongation, and termination. spt5 encodes a conserved essential transcription elongation factor that controls RNAPII processivity in vitro and co-localizes with RNAPII in vivo.
Identification of Spt5 target genes in zebrafish development reveals its dual activity in vivo.
No sample metadata fields
View SamplesThe root apex is an important section of the plant root, involved in environmental sensing and cellular development. Analyzing the gene profile of root apex in diverse environments is important and challenging, especially when the samples are limiting and precious, such as in spaceflight. The feasibility of using tiny root sections for transcriptome analysis was examined in this study.To understand the gene expression profiles of the root apex, Arabidopsis thaliana Col-0 roots were sectioned into Zone-I (0.5 mm, root cap and meristematic zone) and Zone-II (1.5 mm, transition, elongation and growth terminating zone). Gene expression was analyzed using microarray and RNA seq.Both the techniques, arrays and RNA-Seq identified 4180 common genes as differentially expressed (with > two-fold changes) between the zones. In addition, 771 unique genes and 19 novel TARs were identified by RNA-Seq as differentially expressed which were not detected in the arrays.
Comparing RNA-Seq and microarray gene expression data in two zones of the <i>Arabidopsis</i> root apex relevant to spaceflight.
Age, Specimen part
View SamplesWe used microarrays to investigate the transcriptome of 6 days old male flies exposed to either 15 or 25 C development at either constant or fluctuating temperatures. Further, we investigated gene expression at benign (20C) and high (35C) temperatures
Thermal fluctuations affect the transcriptome through mechanisms independent of average temperature.
Sex
View SamplesPlant drought stress response and resistance are complex biological processes that merit systems-level analyses to dissect drought stress encountered by crops in the field. We have used gene expression profiling of Arabidopsis plants subjected to a controlled, sublethal, moderate drought (mDr) treatment to characterize early and late response to drought. We have also compared these profiles to those from plants treated with soil water deficit (progressive) drought (pDr) to reveal acclimation responses in plants.
Molecular and physiological analysis of drought stress in Arabidopsis reveals early responses leading to acclimation in plant growth.
Specimen part, Treatment
View Samples