refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 235 results
Sort by

Filters

Technology

Platform

accession-icon GSE18206
Analysis of human in vivo irritated epidermis: differential profiles induced by sodium lauryl sulphate and nonanoic acid
  • organism-icon Homo sapiens
  • sample-icon 41 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Irritant contact dermatitis (ICD) pathogenesis is not completely understood and the genes participating in the epidermal response towards chemical irritants are only partly known. It is commonly accepted that different irritants have different mechanisms of action in the development of ICD. To define the differential molecular events induced in the epidermis by different irritants, we collected sequential biopsies (, 4 and 24 hours after a single exposure and at day 11 after repeated exposure) from human volunteers exposed to sodium lauryl sulphate (SLS) or nonanoic acid (NON). Gene expression analysis using high-density oligonucleotide microarrays revealed essentially different pathway responses h after exposure: NON transiently induced the IL-6 pathway as well as a number of mitogen activated signalling cascades including ERK and growth factor receptor signalling, whereas SLS transiently downregulated cellular energy metabolism pathways. Differential expression of the cyclooxygenase-2 and matrix metalloproteinase 3 transcripts was confirmed immunohistochemically. After cumulative exposure, 883 genes were differentially expressed while 26 suggested common biomarkers were identified . In conclusion, we bring new insights into two hitherto less well elucidated phases of skin irritancy: the very initial as well as the late phase after single and cumulative exposure, respectively.

Publication Title

Genome-wide expression analysis of human in vivo irritated epidermis: differential profiles induced by sodium lauryl sulfate and nonanoic acid.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE71053
Differential Effect of Surgical Manipulation on Gene Expression in Normal Breast Tissue and Breast Tumour Tissue
  • organism-icon Homo sapiens
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Gene expression profiling is a promising diagnostic and prognostic tool. Expression profiles are snap-shots of mRNA levels at time of extraction and they have been shown to be affected by tissue handling during sample collection. The effect of cold (room temperature) ischemia in the time interval between surgical removal of the specimen and freezing has been described in a number of studies. However, not much is known about the effect of warm (body temperature) ischemia during surgery.

Publication Title

Differential effect of surgical manipulation on gene expression in normal breast tissue and breast tumor tissue.

Sample Metadata Fields

Sex, Specimen part, Disease, Subject

View Samples
accession-icon GSE26049
Expression data from patients with Essentiel Thrombocythemia (ET), Polycythemia Vera (PV), Primary Myelofibrosis (PMF) and control subjects
  • organism-icon Homo sapiens
  • sample-icon 91 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

We used microarrays to assess gene expression in patients with ET, PV, and PMF compared to control subjects

Publication Title

Whole-blood transcriptional profiling of interferon-inducible genes identifies highly upregulated IFI27 in primary myelofibrosis.

Sample Metadata Fields

Specimen part, Disease

View Samples
accession-icon GSE8157
Gene expression profiling in skeletal muscle of PCOS after pioglitazone therapy
  • organism-icon Homo sapiens
  • sample-icon 39 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Insulin resistance is a common metabolic abnormality in women with PCOS and leads to an elevated risk of type 2 diabetes. Studies have shown that thiazolidinediones (TZD) improve metabolic disturbances in PCOS patients. We hypothesized that the effect of TZD in PCOS is in part mediated by changes in the transcriptional profile of muscle favoring insulin sensitivity.

Publication Title

Pioglitazone enhances mitochondrial biogenesis and ribosomal protein biosynthesis in skeletal muscle in polycystic ovary syndrome.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE15101
Extraction of high-quality epidermal RNA after NH4SCN induced dermo-epidermal separation of 4 mm human skin biopsies
  • organism-icon Homo sapiens
  • sample-icon 37 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

To obtain a separation of the epidermal and dermal compartments in order to examine compartment specific biological mechanisms in the skin we incubated 4 mm human skin punch biopsies in ammonium thiocyanate (NH4SCN). We wanted to test 1) the histological quality of the dermo-epidermal separation obtained by different incubation times 2) the amount and quality of extractable epidermal RNA, and 3) its impact on sample RNA expression profiles assessed by large-scale gene expression microarray analysis in both normal and inflamed skin. At 30 minutes incubation, the split between dermis and epidermis was not always histologically well-defined (i.e. occurred partly intra-epidermally) but varied between subjects. Consequently, curettage along the dermal surface of the biopsy was added to the procedure. This modified method resulted in an almost perfect separation of the epidermal and dermal compartments and satisfactory amounts of high-quality RNA were obtained. Hybridization to Affymetrix HG_U133A 2.0 GeneChips showed that ammonium thiocyanate incubation had a minute effect on gene expression resulting in only one significantly downregulated gene (cystatin E/M). We conclude that epidermis can be reproducibly and almost completely separated from the dermis of 4 mm skin biopsies by 30 min incubation in 3.8% ammonium thiocyanate combined with curettage of the dermal surface, producing high-quality RNA suitable for transcriptional analysis. Our refined method of dermo-epidermal separation will undoubtedly prove valuable in the many different settings, where the epidermal and dermal compartments need to be evaluated separately.

Publication Title

Extraction of high-quality epidermal RNA after ammonium thiocyanate-induced dermo-epidermal separation of 4 mm human skin biopsies.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE57793
Expression data from patients with Essential Thrombocythemia (ET), Polycythemia Vera (PV), Primary Myelofibrosis (PMF)
  • organism-icon Homo sapiens
  • sample-icon 58 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Microarrays were used to assess gene expression in patients with ET, PV, and PMF before and after treatment with IFNalpha2 in a paired design.

Publication Title

The impact of interferon-alpha2 on HLA genes in patients with polycythemia vera and related neoplasms.

Sample Metadata Fields

Specimen part, Disease, Disease stage, Treatment

View Samples
accession-icon GSE61629
Expression data from patients with Essential Thrombocythemia (ET), Polycythemia Vera (PV), Primary Myelofibrosis (PMF) (untreated)
  • organism-icon Homo sapiens
  • sample-icon 45 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Microarrays were used to assess gene expression in patients with ET, PV, and PMF before treatment with IFNalpha2.

Publication Title

Whole blood transcriptional profiling reveals deregulation of oxidative and antioxidative defence genes in myelofibrosis and related neoplasms. Potential implications of downregulation of Nrf2 for genomic instability and disease progression.

Sample Metadata Fields

Specimen part, Disease, Disease stage, Treatment

View Samples
accession-icon GSE6798
Reduced expression of mitochondrial oxidative metabolism genes in skeletal muscle of women with PCOS
  • organism-icon Homo sapiens
  • sample-icon 29 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Recently, abnormalities in mitochondrial oxidative phosphorylation (OXPHOS) have been implicated in the pathogenesis of skeletal muscle insulin resistance in type 2 diabetes. In the present study, we hypothesized that decreased expression of OXPHOS genes could be of similar importance for insulin resistance in the polycystic ovary syndrome (PCOS).

Publication Title

Reduced expression of nuclear-encoded genes involved in mitochondrial oxidative metabolism in skeletal muscle of insulin-resistant women with polycystic ovary syndrome.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon E-TABM-89
Transcription profiling by array of mouse embryonic stem cells after treatment with cisplatin
  • organism-icon Mus musculus
  • sample-icon 60 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Expression 430A Array (moe430a)

Description

To gain insight in the kinetics and interplay of the predominant transcriptional responses of DNA damage signalling pathways in undifferentiated cells, mouse embryonic stem cells were exposed to cisplatin at four different time points (2, 4, 8 and 24 hr) and concentrations (1, 2, 5 and 10 uM). RNA was isolated and subjected to genome-wide expression profiling.

Publication Title

A portrait of cisplatin-induced transcriptional changes in mouse embryonic stem cells reveals a dominant p53-like response.

Sample Metadata Fields

Specimen part, Compound, Time

View Samples
accession-icon SRP066192
Genome–wide transcriptional profiling with spatial resolution identifies Bone Morphogenetic Protein signaling as essential regulator of zebrafish cardiomyocyte regeneration.
  • organism-icon Danio rerio
  • sample-icon 2 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

In contrast to mammals, zebrafish regenerate heart injuries via proliferation of cardiomyocytes located at the wound border. Here, we show that tomo-seq can be used to identify whole-genome transcriptional profiles of the injury zone, the border zone and the healthy myocardium. Interestingly, the border zone is characterized by the re-expression of embryonic cardiac genes that are also activated after myocardial infarction in mouse and human, including targets of Bone Morphogenetic Protein (BMP) signaling. Endogenous BMP signaling has been reported to be detrimental to mammalian cardiac repair. In contrast, we find that genetic or chemical inhibition of BMP signaling in zebrafish reduces cardiomyocyte dedifferentiation and proliferation, ultimately compromising myocardial regeneration, while bmp2b overexpression is sufficient to enhance it. Our results provide a resource for further studies on the molecular regulation of cardiac regeneration and reveal intriguing differential cellular responses of cardiomyocytes to a conserved signaling pathway in regenerative versus non-regenerative hearts. Overall design: To generate spatially-resolved RNA-seq data for injured zebrafish hearts (3 and 7 days-post-injury), we cryosectioned samples, extracted RNA from the individual sections, and amplified and barcoded mRNA using the CEL-seq protocol (Hashimshony et al., Cell Reports, 2012) with a few modifications. Libraries were sequenced on Illumina NextSeq using 75bp paired end sequencing.

Publication Title

Spatially Resolved Genome-wide Transcriptional Profiling Identifies BMP Signaling as Essential Regulator of Zebrafish Cardiomyocyte Regeneration.

Sample Metadata Fields

Specimen part, Subject

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact