refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 48 results
Sort by

Filters

Technology

Platform

accession-icon GSE82145
A Potential Role of the Unfolded Protein Response in the Impaired Production and Release of Epinephrine in Recurrent Hypoglycemia
  • organism-icon Rattus norvegicus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

In order to gain further insight into the molecular mechanism(s) mediating the blunted epinephrine responses following recurrent hypoglycemia we utilized global gene expression profiling approach. Our results indicate the association between defective counterregulation (impaired epinephrine release) and the activation of the unfolded protein response as well as increased neuropeptide signaling, altered ion homeostasis and downregulation of proteins involved in Ca2+-dependent exocytosis of secretory vesicles.

Publication Title

Whole genome expression profiling associates activation of unfolded protein response with impaired production and release of epinephrine after recurrent hypoglycemia.

Sample Metadata Fields

Specimen part, Time

View Samples
accession-icon SRP124931
The role of microglia in maturation of adult-born neurons
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Microglia depletion significantly lowered spine density in young (developing) but not mature adult-born-granule-cells (abGCs) in the olfactory bulb. PLX5622 significantly reduces microglia related gene transcripts. Overall design: We tested mouse olfactory bulb transcription in WT mice versus mice treated with a PLX5622 diet (inducing a near-complete microglia depletion).

Publication Title

The role of microglia and their CX3CR1 signaling in adult neurogenesis in the olfactory bulb.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon SRP029274
Mining gene expression data for low doses of radiation and pollutants (dioxin, toluene, formaldehyde)
  • organism-icon Drosophila melanogaster
  • sample-icon 38 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Expression profiles of Drosophila melanogaster in response to ionizing radiation, formaldehyde, toluene, and 2,3,7,8-tetrachlorodibenzo-p-dioxin. Overall design: RNA-seq analysis on 25,415 transcripts to measure the change in gene expression in males and females separately. An analysis of the genes unique to each treatment yielded a list of genes as a gene expression signature. In the case of radiation exposure, both sexes exhibited a reproducible increase in their expression of the transcription factors sugarbabe and tramtrack.

Publication Title

Mining gene expression data for pollutants (dioxin, toluene, formaldehyde) and low dose of gamma-irradiation.

Sample Metadata Fields

Age, Cell line, Treatment, Subject

View Samples
accession-icon SRP078053
The NFkB subunit RELA is a master transcriptional regulator of the committed epithelial-mesenchymal transition in airway epithelial cells
  • organism-icon Homo sapiens
  • sample-icon 18 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 1500

Description

The epithelial-mesenchymal transition (EMT) is a multistep dedifferentiation program important in tissue repair. Here, we examined the role of the transcriptional regulator NFkB in EMT of human primary small airway epithelial cells (hSAECs). Surprisingly, transforming growth factor ß (TGFß) activated NFkB/RELA proto-oncogene, NFkB subunit (RELA) translocation within 1 day of stimulation, yet induction of its downstream gene regulatory network occurred only after 3 days. A time course of TGFß-induced EMT transition was analyzed by RNA-Seq in the absence or presence of inducible shRNA-mediated silencing of RELA. In WT cells, TGFß stimulation significantly affected the expression of 2,441 genes. Gene set enrichment analysis identified Wnt, cadherin, and NFkB signaling as the most prominent TGFß-inducible pathways. By comparison, RELA controlled expression of 3,138 overlapping genes mapping to Wnt, cadherin, and chemokine signaling pathways. Conducting upstream regulator analysis, we found that RELA controls six clusters of upstream transcription factors, many of which overlapped with a transcription factor topology map of EMT developed earlier. RELA triggered expression of three key EMT pathways: (1) the Wnt/ß-catenin morphogen pathway, (2) the JUN transcription factor, and (3) the Snail family transcriptional repressor 1 (SNAI1). RELA binding to target genes was confirmed by ChIP. Experiments independently validating Wnt dependence on RELA were performed by silencing RELA via genome editing and indicated that TGFß-induced WNT5B expression and downstream activation of the Wnt target AXIN2 are RELA-dependent. We conclude that RELA is a master transcriptional regulator of EMT upstream of Wnt morphogen, JUN, SNAI1-ZEB1, and interleukin-6 autocrine loops. Overall design: RNA-seq transcriptome profiling of TGF-Beta stimulated RelA wildtype and knock-down cells

Publication Title

The NFκB subunit RELA is a master transcriptional regulator of the committed epithelial-mesenchymal transition in airway epithelial cells.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon SRP046376
Analysis Of The TGFb-Induced Program In Primary Airway Epithelial Cells Shows Essential Role Of NF-kB/RelA Signaling Network In Type II Epithelial Mesenchymal Transition
  • organism-icon Homo sapiens
  • sample-icon 18 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 1000

Description

The airway epithelial cell plays a central role in coordinating pulmonary response to injury and inflammation. Here, transforming growth factor-b (TGFb) activates gene expression programs to induce stem cell-like properties, inhibit expression of differentiated epithelial adhesion proteins and express mesenchymal contractile proteins. This process is known as epithelial mesenchymal transition (EMT); although much is known about the role of EMT in cellular metastasis in an oncogene-transformed cell, less is known about Type II EMT, that occurring in normal epithelial cells. In this study, we applied next generation sequencing (RNA-seq) in primary human airway epithelial cells to understand the gene program controlling Type II EMT and how cytokine-induced inflammation modifies it. Generalized linear modeling was performed on a two-factor RNA-seq experiment of 6 treatments of telomerase immortalized human small airway epithelial cells (3 replicates). Using a stringent cut-off, we identified 3,478 differentially expressed genes (DEGs) in response to EMT. Unbiased transcription factor enrichment analysis identified three clusters of EMT regulators, one including SMADs/TP63 and another NF-kB/RelA. Surprisingly, we also observed 527 of the EMT DEGs were also regulated by the TNF-NF-kB/RelA pathway. This Type II EMT program was compared to Type III EMT in TGFb stimulated A549 alveolar lung cancer cells, revealing significant functional differences. Moreover, we observe that Type II EMT modifies the outcome of the TNF program, reducing IFN signaling and enhancing integrin signaling. We confirmed experimentally that TGFb-induced the NF-kB/RelA pathway by observing a 2-fold change in NF-kB/RelA nuclear translocation. A small molecule IKK inhibitor blocked TGFb-induced core transcription factor (SNAIL1, ZEB1 and Twist1) and mesenchymal gene (FN1 and VIM) expression. These data indicate that NF-kB/RelA controls a SMAD-independent gene network whose regulation is required for initiation of Type II EMT. Type II EMT dramatically affects the induction and kinetics of TNF-dependent gene networks. Overall design: A human small airway epithelial cell line was treated with TGF-Beta to induce the epithelial to mesenchymal transition. TGF-Beta treated and untreated cells were further treated with TNF-alpha for 1 and 12 hours. Three replicates for each treatment and untreated controls were performed for a total of 18 samples.

Publication Title

Analysis of the TGFβ-induced program in primary airway epithelial cells shows essential role of NF-κB/RelA signaling network in type II epithelial mesenchymal transition.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE53590
Dietary fat disturbance of of gut microbial diurnal patterns uncouples host metabolic networks.
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Diet-induced obesity (DIO) is rapidly becoming a global health problem, particularly as Westernization of emerging nations continues. Currently, one third of adult Americans are considered obese and, if current trends continue, >90% of US citizens are predicted to be affected by 2050. However, efforts to fight this epidemic have not yet produced sound solutions for prevention or treatment. Our studies reveal a balanced and chronobiological relationship between food consumption, daily variation in gut microbial evenness and function, basomedial hypothalamic circadian clock (CC) gene expression, and key hepatic metabolic regulatory networks , including CC and nuclear receptors (NR), that is are essential for metabolic homeostasis. Western diets high in saturated fats dramatically alter diurnal variation in microbial composition and function, which in turn lead to uncoupling of the hepatic CC and NR networks from central CC control in ways that offset the timing and types of regulatory factors directing metabolic function. These signals include microbial metabolites such as short chain fatty acids (SCFAs) and hydrogen sulfide (H2S) that can directly regulate or disrupt metabolic networks of the hepatocyte. Our study therefore provides insights into the complex and dynamic relationships between diet, gut microbes, and the host that are critical for maintenance of health. Perturbations of this constellation of processes, in this case by diet-induced dysbiosis and its metabolomic signaling, can potentially promote metabolic imbalances and disease. This knowledge opens up many possibilities for novel therapeutic and interventional strategies to treat and prevent DIO, ranging from the manipulation of gut microbial function to pharmacological targeting of host pathways to restore metabolic balance.

Publication Title

Effects of diurnal variation of gut microbes and high-fat feeding on host circadian clock function and metabolism.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE46039
hsa-miR-92a knock down in Flp-in T-REx 293-PTH-AGO1 cells
  • organism-icon Homo sapiens
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [probe set (exon) version (huex10st)

Description

transcriptome profiling of miR-92a inhibitor treated and control cells with the aim of measuring miR-92a influence on its mRNA targets

Publication Title

Mapping the human miRNA interactome by CLASH reveals frequent noncanonical binding.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon SRP097631
Sub-populations in the mammary repopulating units
  • organism-icon Mus musculus
  • sample-icon 20 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Elucidating the top of the mammary epithelial cell hierarchy is highly important for understanding its regeneration capabilities and identifying target cells for transformation. Aiming for enriched mammary epithelial stem cell population, CD200highCD200R1high epithelial cells were identified. These cells represent ~50% of the mammary repopulating units (MRUs, CD49fhigh CD24med ) and termed MRUCD200/CD200R1. Gene expression of these cells was compared to all other MRU cells, termed MRUnot CD200/CD200R1, as well as individual CD200+ population (MRU-CD200R1-) and CD200R1+ population (MRU-CD200-). Overall design: Gene expression from mammary epithelial cells carrying sorted by CD200, CD200R1 markers and MRU markers. Four populations were sequenced: MRU-positive CD200 positive and CD200R1 positive; MRU-positive and not CD200 positive CD200R1 positive; not MRU CD200 positive CD200R1 negative; not MRU CD200 negative CD200R1 positive. There are 5 replicates from 5 individual mice.

Publication Title

High Expression of CD200 and CD200R1 Distinguishes Stem and Progenitor Cell Populations within Mammary Repopulating Units.

Sample Metadata Fields

Sex, Specimen part, Cell line, Subject

View Samples
accession-icon GSE41556
Expression data from rice organs at the reproductive stage
  • organism-icon Oryza sativa
  • sample-icon 34 Downloadable Samples
  • Technology Badge Icon Affymetrix Rice Genome Array (rice)

Description

Plant hormones interact with each other and regulate gene expression to control plant growth and development. To understand the complex network, accumulation of comprehensive and integrative data of gene expression and hormone concentration is important. Using microarray, global gene expression profile was analyzed to compare with plant hormone concentration in 14 parts of rice at reproductive stage.

Publication Title

UniVIO: a multiple omics database with hormonome and transcriptome data from rice.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP050074
Genome-wide profiling of short fragment-enriched RNA in HeLa cells subjected to exosome depletion by RNAi
  • organism-icon Homo sapiens
  • sample-icon 3 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

To assay the effect of depletion of the RNA exosome on RNAs shorter than the standard length captured by RNA-seq (>200 nt), we created RNA-seq libraries using fragmented RNA and a linker-ligation-based protocol that does not deplete RNAs shorter than 200 nt. Note: these data relate to Figure 6E in Lubas, Andersen et al., Cell Reports 2014 (accepted) Overall design: These samples constitute RNA-seq libraries prepared to enrich for short RNA fragments such as snRNA and snoRNAs. Three different HeLa cell RNAi experiments were used to generate the RNA samples applied in the library construction: control transfected, hRRP40-depleted and triple-depleted of the known RNA exosome-associated ribonucleases (DIS3, DIS3L and hRRP6 knock-down). By these means the data offers reveal RNA exosome substrates via their up-regulation in the respective knock-downs NOTE: The ''Figure6E_RNAseq_DataTable_PlottedValues.txt'' was generated from total 5 samples, with two additional published samples [SRP031620] and provided to better allow readers to fully replicate the analyses presented in the publication.

Publication Title

The human nuclear exosome targeting complex is loaded onto newly synthesized RNA to direct early ribonucleolysis.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact