refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing 2 of 2 results
Sort by

Filters

Technology

Platform

accession-icon GSE115022
The effect of probiotic Lactobacilli strains, inulin-type fructans and oligofructose on gene expression profiles in intestinal Caco-2 cells
  • organism-icon Homo sapiens
  • sample-icon 22 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.1 ST Array (hugene11st)

Description

Background: Beneficial microbes can be actors in maintaining or stimulating barrier function, and may counteract pathogen-infection. Lactobacilli are particularly recognized for enhancing intestinal barrier function and to confer protective effects against multiresistant pathogens. Various L. acidophilus strains support intestinal immune barrier function and have been shown to improve resistance to pathogens. Although less extensively studied than beneficial bacteria, other food-based ingredients that can contribute to strengthening barrier function are dietary fibers. For instance, inulin and fructooligosaccharides (FOS) have recently been shown to enhance barrier function and protect against barrier dysfunction. Effects of these ingredients on intestinal barrier function were evaluated by quantifying regulation of gene expression by microarray. Methods: Caco-2 cells were incubated with probiotic strains or inulin-type fibers for 6 hours, total RNA was extracted and Affymterix Human Gene 1.1 ST arrays were used to analyze the gene expression profiles. Results: Only L. acidophilus modulated a group of 26 genes related to tight-junctions. Inulin-type fructans, L. brevis W63 and L. casei W56 regulated other genes, unrelated to tight junctions. L. acidophilus also had unique effects on a group of 6 genes regulating epithelial phenotype towards follicle-associated epithelium. L. acidophilus W37 was therefore selected for a challenge with STM and prevented STM-induced barrier disruption and decreased secretion of IL-8. L. acidophilus W37 increases TEER and can protect against STM induced disruption of gut epithelial cells integrity in vitro. Conclusion: Our results suggest that selection of specific bacterial strains for enforcing barrier function may be a promising strategy to reduce or prevent STM infections.

Publication Title

<i>Lactobacillus acidophilus</i> Attenuates <i>Salmonella</i>-Induced Stress of Epithelial Cells by Modulating Tight-Junction Genes and Cytokine Responses.

Sample Metadata Fields

Sex, Cell line, Treatment, Subject

View Samples
accession-icon GSE17111
Pseudomonas aeruginosa PA14, mvfR and anthranilic acid analogs
  • organism-icon Pseudomonas aeruginosa
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Pseudomonas aeruginosa Array (paeg1a)

Description

The Pseudomonas aeruginosa MvfR-dependent QS regulatory pathway controls the expression of key virulence genes; and is activated via the extracellular signals 4-hydroxy-2-heptylquinoline (HHQ) and 3,4-dihydroxy-2-heptylquinoline (PQS), whose syntheses depend on anthranilic acid (AA), the primary precursor of 4-hydroxy-2-alkylquinolines (HAQs). We identified halogenated AA analogs that specifically inhibited HAQ biosynthesis and disrupted MvfR-dependent gene expression. These compounds restricted P. aeruginosa systemic dissemination and mortality in mice, without perturbing bacterial viability, and inhibited osmoprotection, a widespread bacterial function.

Publication Title

Inhibitors of pathogen intercellular signals as selective anti-infective compounds.

Sample Metadata Fields

No sample metadata fields

View Samples
Didn't see a related experiment?

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact