refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 138 results
Sort by

Filters

Technology

Platform

accession-icon GSE51044
Gamma-secretase inhibitor plus fludarabine in CLL
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U219 Array (hgu219)

Description

Combination of GSI with fludarabine has a synergistic antileukemic effect in primary NOTCH1-mutated CLL cells

Publication Title

The γ-secretase inhibitor PF-03084014 combined with fludarabine antagonizes migration, invasion and angiogenesis in NOTCH1-mutated CLL cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE32609
Transcriptional profiling of liver samples from Lmna Gly609Gly knock-in mice
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Hutchinson-Gilford Progeria Syndrome (HGPS) is caused by a point mutation in the LMNA gene that activates a cryptic donor splice site and yields a truncated form of prelamin A called progerin. Small amounts of progerin are also produced during normal aging. Studies with mouse models of HGPS have allowed the recent development of the first therapeutic approaches for this disease. However, none of these earlier works have addressed the aberrant and pathogenic LMNA splicing observed in HGPS patients because of the lack of an appropriate mouse model. We report herein a genetically modified mouse strain that carries the HGPS mutation. These mice accumulate progerin, present histological and transcriptional alterations characteristic of progeroid models, and phenocopy the main clinical manifestations of human HGPS, including shortened life span and bone and cardiovascular aberrations. By using this animal model, we have developed an antisense morpholinobased therapy that prevents the pathogenic Lmna splicing, dramatically reducing the accumulation of progerin and its associated nuclear defects. Treatment of mutant mice with these morpholinos led to a marked amelioration of their progeroid phenotype and substantially extended their life span, supporting the effectiveness of antisense oligonucleotidebased therapies for treating human diseases of accelerated aging.

Publication Title

Splicing-directed therapy in a new mouse model of human accelerated aging.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE40529
Expression data from untreated and DSS-treated Adamts12 WT and KO mice
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Adamts12-deficient mice undergo more severe colitis than WT mice after induction with DSS.

Publication Title

ADAMTS-12 metalloprotease is necessary for normal inflammatory response.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE11632
Transcriptional profiling of Tmprss6-deficient mouse liver
  • organism-icon Mus musculus
  • sample-icon 1 Downloadable Sample
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Matriptase-2 (Tmprss6), a recently described member of the TTSP family, is an essential regulator of iron homeostasis. Tmprss6-/- mice display an overt phenotype of alopecia and a severe iron deficiency anemia. These hematological alterations found in Tmprss6-/- mice are accompanied by a marked up-regulation of hepcidin, a negative regulator of iron export into plasma.

Publication Title

Membrane-bound serine protease matriptase-2 (Tmprss6) is an essential regulator of iron homeostasis.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE65173
NF-B activation impairs somatic cell reprogramming in ageing
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st), Affymetrix Human Gene 2.0 ST Array (hugene20st), Affymetrix Human Exon 1.0 ST Array [transcript (gene) version (huex10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

NF-κB activation impairs somatic cell reprogramming in ageing.

Sample Metadata Fields

Specimen part, Disease, Disease stage, Treatment

View Samples
accession-icon GSE65172
NF-B activation impairs somatic cell reprogramming in ageing [MSCs]
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Transcriptional profiling of human control and Nstor-Guillermo Progeria Syndrome (NGPS) mesenchymal stem cells (MSCs).

Publication Title

NF-κB activation impairs somatic cell reprogramming in ageing.

Sample Metadata Fields

Specimen part, Disease, Disease stage, Treatment

View Samples
accession-icon GSE27525
Expression data from diet-induced obesity Oma1-deficient mice.
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Transriptional profiling of white adipose tissue extracted from obese mice.

Publication Title

Loss of mitochondrial protease OMA1 alters processing of the GTPase OPA1 and causes obesity and defective thermogenesis in mice.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE117188
Effect of methione restriction in the liver of WT and Lmna G609G KI mice
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Dietary intervention constitutes a feasible approach for modulating metabolism and improving healthspan and lifespan. Methionine restriction (MR) delays the appearance of age-related diseases and increases longevity in normal mice. However, the effect of MR on premature aging remains to be elucidated. Here, we describe that MR extends lifespan in two different mouse models of Hutchinson-Gilford progeria syndrome (HGPS) by reversing the transcriptome alterations in inflammation and DNA-damage response genes present in this condition. Further, MR improves the lipid profile and alters the levels of bile acids, both in wild-type and in progeroid mice. Notably, treatment with the bile acid cholic acid improves healthspan and lifespan in vivo. These results suggest the existence of a metabolic pathway involved in the longevity extension achieved by MR and support the possibility of dietary interventions for treating progeria.

Publication Title

Methionine Restriction Extends Lifespan in Progeroid Mice and Alters Lipid and Bile Acid Metabolism.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE36056
Transcriptional profiling of intestinal samples from Atg4b knock-out mice during chemical-induced colitis
  • organism-icon Mus musculus
  • sample-icon 7 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

The identification of inflammatory bowel disease (IBD) susceptibility genes by genome-wide association has linked this pathology to autophagy, a lysosomal degradation pathway that is crucial for cell and tissue homeostasis. Here, we describe autophagin-1 (ATG4B) as an essential protein in the control of inflammatory response during experimental colitis. In this pathological condition, ATG4B protein levels increase paralleling the induction of autophagy. Moreover, ATG4B expression is significantly reduced in affected areas of the colon from IBD patients. Consistently, atg4b-/- mice present Paneth cell abnormalities, as well as an increased susceptibility to DSS-induced colitis. Atg4b-deficient mice exhibit significant alterations in proinflammatory cytokines and mediators of the immune response to bacterial infections, which are reminiscent of those found in patients with Crohns disease or ulcerative colitis. Additionally, antibiotic treatments and bone marrow transplantation from wild-type mice reduced colitis in atg4b-/- mice. Taken together, these results provide additional evidence on the importance of autophagy in intestinal pathologies and describe ATG4B as a novel protective protein in inflammatory colitis. Finally, we propose that Atg4b-null mice are a suitable model for in vivo studies aimed at testing new therapeutic strategies for intestinal diseases associated with autophagy deficiency

Publication Title

ATG4B/autophagin-1 regulates intestinal homeostasis and protects mice from experimental colitis.

Sample Metadata Fields

Sex, Age, Specimen part, Treatment

View Samples
accession-icon GSE22971
Expression data from MMP-8 wild type and KO mice with or without arthritis
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Rheumatoid arthritis is an autoimmune disease in which joint inflammation lead to progressive cartilage and bone destruction. Matrix metalloproteinases (MMP) implicated in homeostasis of extracellular matrix (ECM) play a central role in cartilage degradation. The aim of this study was to investigate the role of MMP-8 (collagenase-2) suppression in the K/BxN serum-transfer arthritis model.

Publication Title

Matrix metalloproteinase-8 deficiency increases joint inflammation and bone erosion in the K/BxN serum-transfer arthritis model.

Sample Metadata Fields

Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact