refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 105 results
Sort by

Filters

Technology

Platform

accession-icon GSE61140
Expression data from mouse arthritis tarsal joints
  • organism-icon Mus musculus
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Pathological bone changes differ considerably between inflammatory arthritic diseases, and most studies have focused on bone erosion. Collagen Induced Arthritis (CIA) is a model for Rheumatoid Arthritis, which, in addition to bone erosion, demonstrates bone formation at the time for clinical manifestations. The objective of this study was to use the CIA model to study bone remodelling by performing a gene expression profiling time-course study on the CIA model.

Publication Title

Kinetics of gene expression and bone remodelling in the clinical phase of collagen-induced arthritis.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE81119
Major differences between human atopic dermatitis and murine models as determined by global genomic profiling
  • organism-icon Mus musculus
  • sample-icon 37 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

In this study we applied genomic profiling to evaluate the transcriptomic differences between murine models ot atopic dermatitis.

Publication Title

Major differences between human atopic dermatitis and murine models, as determined by using global transcriptomic profiling.

Sample Metadata Fields

Sex, Specimen part, Treatment

View Samples
accession-icon GSE20581
DNA microarrays of 4 human iPSC cell lines and the ESC cell line H9
  • organism-icon Homo sapiens
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Documents of DNA expression of 4 human induced pluripotent stem cell (iPSC) lines from umbilical cord mesenchymal cells (UMCs) and amniotic mesenchymal cells (AMCs). We used microarrays to identify similarity between 4 iPSC cell lines and the human embryonic stem cell (ESC) line H9.

Publication Title

Generation of human induced pluripotent stem cells from umbilical cord matrix and amniotic membrane mesenchymal cells.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE19379
DNA microarrays time course of SKO-infected MEFs and MaF pre-iPSCs treated with Vc
  • organism-icon Mus musculus
  • sample-icon 22 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Vitamin C enhances the generation of mouse and human induced pluripotent stem cells.

Sample Metadata Fields

Specimen part, Treatment, Time

View Samples
accession-icon GSE19377
DNA microarrays time course of SKO-infected MEFs treated with Vc
  • organism-icon Mus musculus
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

In order to understand the global gene expression changes resulting from the addition of vitamin C (Vc) to SKO (sox2, klf4 and oct4)-transduced mouse embryonic fibroblasts (MEFs), we used microarray to compare the gene expression profile at different time points with or without Vc.

Publication Title

Vitamin C enhances the generation of mouse and human induced pluripotent stem cells.

Sample Metadata Fields

Specimen part, Treatment, Time

View Samples
accession-icon GSE19378
DNA microarrays time course of a MaF pre-iPSC clone (C9) untreated or treated with Vc
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Treatment with vitamin C (Vc) on MaF pre-induced pluripotent stem cells (pre-iPSCs) induced a rapid conversion into full-iPSCs within a few passages. We used microarrays to identify changes induced by Vc in the MaF pre-iPSC clone.

Publication Title

Vitamin C enhances the generation of mouse and human induced pluripotent stem cells.

Sample Metadata Fields

Specimen part, Treatment, Time

View Samples
accession-icon SRP151009
A role for p53 in the adaptation to glutamine starvation through the expression of Slc1a3
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

Numerous mechanisms to support cells under conditions of transient nutrient starvation have been described. The tumor suppressor protein p53 can contribute to the adaptation of cells to metabolic stress through various mechanisms that may help cancer cell survival in nutrient limiting conditions. We show here that p53 helps cancer cells to survive glutamine starvation by promoting the expression of SLC1A3, an aspartate/glutamate transporter that allows the utilization of aspartate to support cells in the absence of extracellular glutamine. Under glutamine deprivation, SLC1A3 expression maintains electron transport chain and tricarboxylic acid cycle activity, promoting de novo glutamate, glutamine and nucleotide synthesis to rescue cell viability. Tumor cells with high levels of SLC1A3 expression are resistant to glutamine starvation and SLC1A3 depletion retards the growth of these cells in vitro and in vivo, suggesting a therapeutic potential for SLC1A3 inhibition. Overall design: We quantify transcription via high throughput RNA sequencing in HCT116 cells (WT1 and WT2 clones) grown in complete medium (CM) or in glutamine-free medium (GD) for 48 hours.

Publication Title

A Role for p53 in the Adaptation to Glutamine Starvation through the Expression of SLC1A3.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE6237
Fine temporal analysis of DHT transcriptional modulation of the ATM/Gadd45g signaling pathways in the mouse uterus.
  • organism-icon Mus musculus
  • sample-icon 7 Downloadable Samples
  • Technology Badge Icon Affymetrix Murine Genome U74A Version 2 Array (mgu74av2)

Description

In rodents, the uterus of a mature

Publication Title

Fine temporal analysis of DHT transcriptional modulation of the ATM/Gadd45g signaling pathways in the mouse uterus.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE6219
Expression data from mouse uteri after ovariectomy and E2 treatment.
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Murine Genome U74A Version 2 Array (mgu74av2)

Description

17-Estradiol (E2) is well known to be associated with uterine cancer, endometriosis, and leiomyomas. Although insulin-like growth factor I (IGF-I) has been identified as a mediator of the uterotrophic effect of E2 in several studies, this mechanism is still not well understood. In the present study, identification of the genes modulated by a physiological dose of E2, in the uterus, has been done in ovariectomized mice using Affymetrix microarrays. The E2-induced genomic profile shows that multiple genes belonging to the IGF-I pathway are affected after exposure to E2. Two phases of regulation could be identified. First, from 0 to 6 h, the expression of genes involved in the cell cycle, growth factors, protein tyrosine phosphatases, and MAPK phosphatases is quickly upregulated by E2, while IGF-I receptor and several genes of the MAPK and phosphatidylinositol 3-kinase pathways are downregulated. Later, i.e., from 6 to 24 h, transporters and peptidases/proteases are stimulated, whereas defense-related genes are differentially regulated by E2. Finally, cytoarchitectural genes are modulated later. The present data show that a physiological dose of E2 induces, within 24 h, a series of transcriptional events that promote the uterotrophic effect. Among these, the E2-mediated activation of the IGF-I pathway seems to play a pivotal role in the uterotrophic effect. Furthermore, the protein tyrosine phosphatases and MAPK phosphatases are likely to modulate the estrogenic uterotrophic action by targeting, at different steps, the IGF-I pathway.

Publication Title

Temporal analysis of E2 transcriptional induction of PTP and MKP and downregulation of IGF-I pathway key components in the mouse uterus.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE10626
MuRF1-dependent regulation of systemic carbohydrate metabolism as revealed from transgenic mouse studies
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Under various pathophysiological muscle-wasting conditions like diabetes and starvation, a family of ubiquitin ligases, including MuRF1 (Muscle specific RING-Finger protein 1), are induced to target muscle proteins for degradation via ubiquitination. In an attempt to identify the in vivo targets of MuRF1 we have generated transgenic mouse lines overexpressing MuRF1 in a skeletal muscle specific fashion. MuRF1-TG lines were viable and had normal fertility. Characterization of their skeletal muscles did not reveal evidence for muscle wasting at 10 weeks of age. In this experiment we compared the skeletal muscle transcriptome of transgenic mice with wildtypes.

Publication Title

MuRF1-dependent regulation of systemic carbohydrate metabolism as revealed from transgenic mouse studies.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact