refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 163 results
Sort by

Filters

Technology

Platform

accession-icon GSE41521
Genome wide analysis of C57BL-6 mice infected with European strain (P1/7) of Streptococcus suis
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina MouseRef-8 v2.0 expression beadchip

Description

Streptococcus suis is a major swine pathogen that can be transmitted to humans causing severe symptoms. A large human outbreak was described in China, where approximately 25% out of 215 infected humans developed an unusual streptococcal toxic shock-like syndrome (STSLS). Albeit increased expression of inflammatory mediators following infection by the Chinese S. suis strain was suggested as responsible for STSLS case severity, the mechanisms involved are still poorly understood. In this study, we investigated the host innate immune response to infection by either one of 3 strains of S. suis: 89-1591 (Canadian, intermediate virulence), P1/7 (European, high virulence), and SC84 (Chinese, epidemic strain). Using Illumina microarray and validating those results with qPCR and Luminex assay, infected mice showed elevated expression of mainly pro-inflammatory chemokine and cytokine genes. Generally, pro-inflammatory genes were expressed at a higher level in mice infected with S. suis strain SC84 > P1/7 > 89-1591. Interestingly, IFN was expressed at much higher levels only in mice infected with the S. suis strain SC84, which could potentially explain some of the STSLS symptoms. IFN-KO mice infected with SC84 showed better survival than WT mice while no differences was seen in mice infected with highly virulent P1/7 strain. Overall, our results show an important role of IFN in S. suis infections and might explain in part the increased virulence of SC84 responsible for a recent outbreak in China.

Publication Title

Exacerbated type II interferon response drives hypervirulence and toxic shock by an emergent epidemic strain of Streptococcus suis.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE41520
Genome wide analysis of C57BL-6 mice infected with North-American strain (89-1591) of Streptococcus suis
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina MouseRef-8 v2.0 expression beadchip

Description

Streptococcus suis is a major swine pathogen that can be transmitted to humans causing severe symptoms. A large human outbreak was described in China, where approximately 25% out of 215 infected humans developed an unusual streptococcal toxic shock-like syndrome (STSLS). Albeit increased expression of inflammatory mediators following infection by the Chinese S. suis strain was suggested as responsible for STSLS case severity, the mechanisms involved are still poorly understood. In this study, we investigated the host innate immune response to infection by either one of 3 strains of S. suis: 89-1591 (Canadian, intermediate virulence), P1/7 (European, high virulence), and SC84 (Chinese, epidemic strain). Using Illumina microarray and validating those results with qPCR and Luminex assay, infected mice showed elevated expression of mainly pro-inflammatory chemokine and cytokine genes. Generally, pro-inflammatory genes were expressed at a higher level in mice infected with S. suis strain SC84 > P1/7 > 89-1591. Interestingly, IFN was expressed at much higher levels only in mice infected with the S. suis strain SC84, which could potentially explain some of the STSLS symptoms. IFN-KO mice infected with SC84 showed better survival than WT mice while no differences was seen in mice infected with highly virulent P1/7 strain. Overall, our results show an important role of IFN in S. suis infections and might explain in part the increased virulence of SC84 responsible for a recent outbreak in China.

Publication Title

Exacerbated type II interferon response drives hypervirulence and toxic shock by an emergent epidemic strain of Streptococcus suis.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE41522
Genome wide analysis of C57BL-6 mice infected with Chinese strain (SC84) of Streptococcus suis
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina MouseRef-8 v2.0 expression beadchip

Description

Streptococcus suis is a major swine pathogen that can be transmitted to humans causing severe symptoms. A large human outbreak was described in China, where approximately 25% out of 215 infected humans developed an unusual streptococcal toxic shock-like syndrome (STSLS). Albeit increased expression of inflammatory mediators following infection by the Chinese S. suis strain was suggested as responsible for STSLS case severity, the mechanisms involved are still poorly understood. In this study, we investigated the host innate immune response to infection by either one of 3 strains of S. suis: 89-1591 (Canadian, intermediate virulence), P1/7 (European, high virulence), and SC84 (Chinese, epidemic strain). Using Illumina microarray and validating those results with qPCR and Luminex assay, infected mice showed elevated expression of mainly pro-inflammatory chemokine and cytokine genes. Generally, pro-inflammatory genes were expressed at a higher level in mice infected with S. suis strain SC84 > P1/7 > 89-1591. Interestingly, IFN was expressed at much higher levels only in mice infected with the S. suis strain SC84, which could potentially explain some of the STSLS symptoms. IFN-KO mice infected with SC84 showed better survival than WT mice while no differences was seen in mice infected with highly virulent P1/7 strain. Overall, our results show an important role of IFN in S. suis infections and might explain in part the increased virulence of SC84 responsible for a recent outbreak in China.

Publication Title

Exacerbated type II interferon response drives hypervirulence and toxic shock by an emergent epidemic strain of Streptococcus suis.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE66164
Gene expression in human lymphoblastoid cell-line GM12878 in response to sulforaphane treatment
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [transcript (gene) version (huex10st)

Description

To determine if induced NRF2 binding is associated with gene expression in genome-wide. We examined mRNA levels with theAffymetrix Human Exon 1.0 ST platform in human lymphoblastoid GM12878 cells treated with sulforaphane to activate NRF2.

Publication Title

Beyond antioxidant genes in the ancient Nrf2 regulatory network.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE104328
LRH-1/NR5A2 for the treatment of autoimmune diseases
  • organism-icon Mus musculus
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

LRH-1 agonism favours an immune-islet dialogue which protects against diabetes mellitus.

Sample Metadata Fields

Age, Specimen part, Treatment

View Samples
accession-icon GSE104322
LRH-1/NR5A2 induces M1 to M2 macrophage phenotypic switch
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

Strategy to repress autoimmunity and promote islet beta cell regeneration

Publication Title

LRH-1 agonism favours an immune-islet dialogue which protects against diabetes mellitus.

Sample Metadata Fields

Age, Specimen part, Treatment

View Samples
accession-icon GSE45577
Profiling of glycerol- and CTX-induced models of muscle regeneration in mice
  • organism-icon Mus musculus
  • sample-icon 48 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Utilizing glycerol and cardiotoxin (CTX) injections in the tibialis anterior muscles of M. musculus provides models of skeletal muscle damages followed by skeletal muscle regeneration. In particular, glycerol-induced muscle regeneration is known to be associated with ectopic adipogenesis. We characterized genome-wide expression profiles of tibialis anterior muscles from wild-type mice injured by either glycerol or CTX injection. Our goal was to detect gene expression changes during the time course of glycerol-induced and CTX-induced muscle regeneration models, that can lead to ectopic adipocyte accumulation.

Publication Title

Genomic profiling reveals that transient adipogenic activation is a hallmark of mouse models of skeletal muscle regeneration.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE7586
Genome wide analysis of placental malaria
  • organism-icon Homo sapiens
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Chronic inflammation during placental malaria (PM) caused by Plasmodium falciparum is most frequent in first-time mothers and is associated with poor maternal and fetal outcomes. In the first genome wide analysis of the local human response to sequestered malaria parasites, we identified genes associated with chronic PM, then localized the corresponding proteins and immune cell subsets in placental cryosections.

Publication Title

Genome-wide expression analysis of placental malaria reveals features of lymphoid neogenesis during chronic infection.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP159906
High-throughput RNA-sequencing-based transcriptomic profiles of embryonic lens development for cataract gene discovery
  • organism-icon Mus musculus
  • sample-icon 15 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

We applied previously established in silico whole-embryo body (WB)-subtraction-based approach to identify “lens-enriched” genes. These new RNA-seq datasets on embryonic stages E10.5, E12.5, E14.5 and E16.5 confirmed high expression of established cataract-linked genes and identified several new potential regulators in the lens. Finally, we present lens stage-specific UCSC Genome Brower annotation-tracks; these are publicly accessible through iSyTE (https://research.bioinformatics.udel.edu/iSyTE/) and enable a user-friendly visualization of lens gene expression/enrichment to help prioritize genes from high-throughput data from cataract cases. Overall design: RNA-sequencing datasets of microdissected embyonic eye lens samples from stages embryonic day E10.5, E12.5, E14.5 and E16.5 were generated. To estimate lens enriched genes we generated control “whole-embryo body (WB)” datasets. The lens enriched genes were used for enrichment level based clustering to identify gene clusters exhibiting distinct lens enrichment patterns across E10.5 to E16.5 developmental window. This new lens RNA-seq data and its accessibility through iSyTE 2.0 serves as a new integrative resource for prioritization of lens defects and/or cataract-linked candidate genes identified by other high-throughput analyses such as exome-seq and GWAS.

Publication Title

RNA sequencing-based transcriptomic profiles of embryonic lens development for cataract gene discovery.

Sample Metadata Fields

Cell line, Subject

View Samples
accession-icon GSE45838
Knock-down of BCL6 expression in human Diffuse Large B-Cell Lymphoma cell lines
  • organism-icon Homo sapiens
  • sample-icon 11 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This dataset was used to benchmark the Virtual Inference of Protein-activity by Regulon Readout algorithm (VIPER). Despite recent advances in molecular profiling, proteome-wide assessment of protein activity in individual samples remains a highly elusive target. In stark contrast, protein activity quantitation is increasingly critical to the dissection of key regulatory processes and to the elucidation of biologically relevant mechanisms. Importantly, its value extends to the study of drug activity, as most small molecules inhibit activity of their cognate protein substrates without affecting the proteins or associated mRNAs abundance.

Publication Title

Functional characterization of somatic mutations in cancer using network-based inference of protein activity.

Sample Metadata Fields

Specimen part, Cell line

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact