refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 408 results
Sort by

Filters

Technology

Platform

accession-icon GSE28476
Characterization of differential gene expression in adrenocortical tumors harbouring -catenin (CTNNB1) mutations.
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Mutations of -catenin gene (CTNNB1) are frequent in adrenocortical adenomas (AA) and carcinomas (ACC). However, the target genes of CTNNB1 have not yet been identified in adrenocortical tumors.

Publication Title

Characterization of differential gene expression in adrenocortical tumors harboring beta-catenin (CTNNB1) mutations.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE71571
Tissue-specific patterns of gene expression in the epithelium and stroma of normal colon in healthy individuals in an aspirin intervention trial
  • organism-icon Homo sapiens
  • sample-icon 175 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The objectives of this study were to measure effects of an aspirin intervention on gene expression in normal colonic epithelial and stromal tissue in healthy humans and to determine whether response differed by UGT1A6*2 genotype. We also sought to characterize gene expression differences within colonic tissue microenvironments by identifying genes that were differentially expressed between epithelial and stromal tissue.

Publication Title

Tissue-specific patterns of gene expression in the epithelium and stroma of normal colon in healthy individuals in an aspirin intervention trial.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE110186
NOD2- and disease-specific gene expression profiles of peripheral blood mononuclear cells from Crohns disease patients
  • organism-icon Homo sapiens
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Clariom S Human array (clariomshuman)

Description

Employing microarray assays, a total of 267 genes were identified that were significantly up- or downregulated in PBMCs of WT-NOD2 patients, compared to healthy donors after challenge with vitamin D (+/-D) and/or a combination (+/-LP) of LPS (lipopolysaccharide) and PGN (peptidoglycan) (p < 0.05; threshold: 2-fold change). For further analysis by real-time PCR, 12 genes with known impact on inflammation and immunity were selected that fulfilled predefined expression criteria. In a larger cohort of patients and controls, a disease-associated expression pattern, with higher transcript levels in vitamin D-treated PBMCs from 5 patients, was observed for three of these genes, CLEC5A (p < 0.030), lysozyme (LYZ; p < 0.047) and TREM1 (p < 0.023). Six genes were found to be expressed in a NOD2- dependent manner (CD101, p < 0.002; CLEC5A, p < 0.020; CXCL5, p < 0.009; IL-24, p < 0.044; ITGB2, p < 0.041; LYZ, p < 0.042). Interestingly, the highest transcript levels were observed in patients with heterozygous NOD2 mutations.

Publication Title

&lt;i&gt;NOD2&lt;/i&gt;- and disease-specific gene expression profiles of peripheral blood mononuclear cells from Crohn's disease patients.

Sample Metadata Fields

Specimen part, Disease, Disease stage, Treatment

View Samples
accession-icon GSE69269
Disturbance of gene expression in primary human hepatocytes by hepatotoxic pyrrolizidine alkaloids: a whole genome transcriptome analysis
  • organism-icon Homo sapiens
  • sample-icon 13 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

1,2-unsaturated pyrrolizidine alkaloids (PA) are plant metabolites predominantly occurring in the plant families Asteraceae and Boraginaceae. Acute and chronic PA poisoning causes severe hepatotoxicity. So far, the molecular mechanisms of PA toxicity are not well understood. To analyze its mode of action, primary human hepatocytes were exposed to a non-cytotoxic dose of 100 M of four structurally different PA: echimidine, heliotrine, senecionine, senkirkine. Changes in mRNA expression were analyzed by a whole genome microarray. Employing cut-off values with a |fold change| of 2 and a q-value of 0.01, data analysis revealed numerous changes in gene expression. In total, 4556, 1806, 3406 and 8623 genes were regulated by echimidine, heliotrine, senecione and senkirkine, respectively. 1304 genes were identified as commonly regulated. PA affected pathways related to cell cycle regulation, cell death and cancer development. The transcription factors TP53, MYC, NFB and NUPR1 were predicted to be activated upon PA treatment. Furthermore, gene expression data showed a considerable interference with lipid metabolism and bile acid flow. The associated transcription factors FXR, LXR, SREBF1/2, and PPAR// were predicted to be inhibited. In conclusion, though structurally different, all four PA significantly regulated a great number of genes in common. This proposes similar molecular mechanisms, although the extent seems to differ between the analyzed PA as reflected by the potential hepatotoxicity and individual PA structure.

Publication Title

Disturbance of gene expression in primary human hepatocytes by hepatotoxic pyrrolizidine alkaloids: A whole genome transcriptome analysis.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP105329
RNA-Seq of SHEP TET21N cells upon Doxorubicin treatment
  • organism-icon Homo sapiens
  • sample-icon 28 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

MYCN-high and MYCN-low neuroblastoma cells differ in their responses to Doxorubicin treatment. To explain this difference we compared the global trancriptomes of MYCN-high and MYCN-low cells before, during and after treatment. Overall design: MYCN-high cells without doxycyline and MYCN-low cells with doxycycline were treated with 0.1µg/ml Doxorubicin. Transcriptome was measured for the following time points: in untreated cells, in cells which were treated with Doxorubicin for 72 hours, and in cells collected three, eight and fourteen days after Doxorubin washout. Experiment was performed in biological duplicate.

Publication Title

Cell-Cycle Position of Single MYC-Driven Cancer Cells Dictates Their Susceptibility to a Chemotherapeutic Drug.

Sample Metadata Fields

Treatment, Subject, Time

View Samples
accession-icon GSE62253
Molecular mechanism of silver nanoparticles in human intestinal cell line Caco-2
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Silver nanoparticles are used in consumer products like food contact materials, drinking water technologies and supplements, due to their antimicrobial properties. This leads to an oral uptake and exposure of intestinal cells. In contrast to other studies we found no apoptosis induction by surfactant coated silver nanoparticles in the intestinal cell model Caco-2 in a previous study, although the particles induced oxidative stress, morphological changes and cell death. Therefore, this study aimed to analyze the molecular mechanism of silver nanoparticles in Caco-2 cells. We used global gene expression profiling in differentiated Caco-2 cells, supported by verification of the microarray data by quantitative real time RT-PCR and microscopic analysis, impedance measurements and assays for apoptosis and oxidative stress. Our results revealed that the majority of surfactant coated silver nanoparticles are not taken up into differentiated Caco-2 cells. and probably affect the cells by outside-in signaling. They induce oxidative stress and have an influence on canonical pathways related to FAK, ILK, ERK, MAPK, integrins and adherence and tight junctions, thereby inducing transcription factors like AP1, NFB and NRF2, which mediate cellular reactions in response to oxidative stress and metal ions and induce changes in the cytoskeleton and cell-cell and cell-matrix contacts. The present data confirm the absence of apoptotic cell death. Non-apoptotic, necrotic cell death, especially in the intestine, can cause inflammation and influence the mucosal immune response.

Publication Title

Molecular mechanism of silver nanoparticles in human intestinal cells.

Sample Metadata Fields

Cell line

View Samples
accession-icon SRP106053
Immune-Responsive Gene 1 expression in myeloid cells prevents neutrophil mediated immunopathology during Mycobacterium tuberculosis infection, in vitro neutrophils data
  • organism-icon Mus musculus
  • sample-icon 18 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Immune-Responsive Gene 1 (Irg1) is a mitochondrial enzyme that produces itaconate under inflammatory conditions principally in cells of myeloid lineage. Cell culture studies suggest that itaconate regulates inflammation through inhibitory effects on cytokine and reactive oxygen species production. To evaluate the functions of Irg1 in vivo, we challenged wild-type (WT) and Irg1 KO mice with Mycobacterium tuberculosis (Mtb) and monitored disease progression. Irg1 KO but not WT mice succumbed rapidly to Mtb, and mortality was associated with increased infection, inflammation, and pathology. Infection of LysM-Cre Irg1 flox, MPR8-Cre Irg1 flox, and CD11c-Cre Irg1 flox conditional knockout mice along with neutrophil depletion experiments revealed a role for Irg1 in alveolar macrophages and LysM+ myeloid cells in preventing neutrophil-mediated immunopathology and disease. RNA-seq analyses suggest that Irg1 and its production of itaconate temper Mtb-induced inflammatory responses in myeloid cells at the transcriptional level. Thus, Irg1 modulates inflammation to curtail Mtb-induced lung disease. Overall design: Neutrophils were purified from bone marrow of naïve mice by negative selection using magnetic-activated cell sorting beads (Miltenyi). Neutrophil purity (>95%) was assessed by flow cytometry as the percentage of Ly6G+ CD11b+ cells. Neutrophils were cultured in RPMI-1640 supplemented with 1% non-essential amino acids at 37°C, 5% CO2. GFP-Mtb was grown to mid-log phase, washed with PBS, sonicated to disperse clumps, and resuspended in neutrophil culture media. GFP-Mtb then was opsonized prior to infection by mixing with an equal volume of normal mouse sera (Sigma) and incubation at room temperature for 30 min. Neutrophils were mock-infected or infected with opsonized GFP-Mtb at MOI 1 and incubated at 37°C, 5% CO2.

Publication Title

<i>Irg1</i> expression in myeloid cells prevents immunopathology during <i>M. tuberculosis</i> infection.

Sample Metadata Fields

Specimen part, Cell line, Subject, Time

View Samples
accession-icon GSE20011
Gene expression analysis of Hodgkin and non-Hodgkin lymphoma cell lines
  • organism-icon Homo sapiens
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Genomewide gene expression analysis of lymphoid cell lines of Hodgkin, non-Hodgkin and acute leukemia origin

Publication Title

High-level expression of Mastermind-like 2 contributes to aberrant activation of the NOTCH signaling pathway in human lymphomas.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP126934
Immune-Responsive Gene 1 expression in myeloid cells prevents neutrophil mediated immunopathology during Mycobacterium tuberculosis infection [macrophage]
  • organism-icon Mus musculus
  • sample-icon 15 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Immune-Responsive Gene 1 (Irg1) is a mitochondrial enzyme that produces itaconate under inflammatory conditions principally in cells of myeloid lineage. Cell culture studies suggest that itaconate regulates inflammation through inhibitory effects on cytokine and reactive oxygen species production. To evaluate the functions of Irg1 in vivo, we challenged wild-type (WT) and Irg1-/- mice with Mycobacterium tuberculosis (Mtb) and monitored disease progression. Irg1-/- but not WT mice succumbed rapidly to Mtb, and mortality was associated with increased infection, inflammation, and pathology. Infection of LysM-Cre Irg1fl/fl, MPR8-Cre Irg1fl/fl, and CD11c-Cre Irg1fl/fl conditional knockout mice along with neutrophil depletion experiments revealed a role for Irg1 in alveolar macrophages and LysM+ myeloid cells in preventing neutrophil-mediated immunopathology and disease. RNA-seq analyses suggest that Irg1 and its production of itaconate temper Mtb-induced inflammatory responses in myeloid cells at the transcriptional level. Thus, Irg1 modulates inflammation to curtail Mtb-induced lung disease. Overall design: Macrophages were obtained by culturing bone marrow cells in RPMI-1640 (Invitrogen) supplemented with 10% heat inactivated fetal bovine serum, 2 mM L-glutamine, 1% non-essential amino acids, 100 U penicillin per mL, 100 µg streptomycin per mL, and 22 ng M-CSF (Peprotech) per ml for 6 days at 37°C, 5% CO2. Fresh media was added on day 3 of culture. After 6 days of culture, non-adherent cells were discarded. Adherent macrophages were switched into antibiotic-free media and seeded at 105 cells per well and 9 x 105 cells per well in tissue culture-treated 96 and 6 well plates respectively. In some cases, macrophages were treated with 0.25 mM itaconic acid (Sigma) for 12 h prior to inoculation with Mtb. Mtb was grown to mid-log phase, washed with PBS, sonicated to disperse clumps, and resuspended in antibiotic-free macrophage culture media. Macrophage cultures were inoculated by adding Mtb-containing media at a multiplicity of infection (MOI) of 1 and centrifuging for 10 min at 200 x g. Cells were washed twice with PBS to remove unbound Mtb, fresh culture media was added, and cells were incubated at 37°C, 5% CO2. In some cases culture media was supplemented with 0.25 mM itaconic acid.

Publication Title

<i>Irg1</i> expression in myeloid cells prevents immunopathology during <i>M. tuberculosis</i> infection.

Sample Metadata Fields

Specimen part, Treatment, Subject

View Samples
accession-icon SRP106055
Immune-Responsive Gene 1 expression in myeloid cells prevents neutrophil mediated immunopathology during Mycobacterium tuberculosis infection, in vivo neutrophil data
  • organism-icon Mus musculus
  • sample-icon 11 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Immune-Responsive Gene 1 (Irg1) is a mitochondrial enzyme that produces itaconate under inflammatory conditions principally in cells of myeloid lineage. Cell culture studies suggest that itaconate regulates inflammation through inhibitory effects on cytokine and reactive oxygen species production. To evaluate the functions of Irg1 in vivo, we challenged wild-type (WT) and Irg1 KO mice with Mycobacterium tuberculosis (Mtb) and monitored disease progression. Irg1 KO but not WT mice succumbed rapidly to Mtb, and mortality was associated with increased infection, inflammation, and pathology. Infection of LysM-Cre Irg1 flox, MPR8-Cre Irg1 flox, and CD11c-Cre Irg1 flox conditional knockout mice along with neutrophil depletion experiments revealed a role for Irg1 in alveolar macrophages and LysM+ myeloid cells in preventing neutrophil-mediated immunopathology and disease. RNA-seq analyses suggest that Irg1 and its production of itaconate temper Mtb-induced inflammatory responses in myeloid cells at the transcriptional level. Thus, Irg1 modulates inflammation to curtail Mtb-induced lung disease. Overall design: C57BL/6N (WT) mice were purchased from Charles River. B6.SJL (CD45.1) mice were obtained from Jackson Laboratories. Irg1-/- mice (embryonic stem cells obtained from KOMP (C57BL/6N background), MGI: 103206) were generated at Washington University. Adult mice (6-13 weeks of age) of both sexes were used, and sex was randomized between experiments. Neutrophils were purified by magnetic-activated cell sorting from the bone marrow of naïve mice (negative selection) or the lungs of Mtb-infected mice at 16 dpi (selection for Ly6G+ cells) (Miltenyi).

Publication Title

<i>Irg1</i> expression in myeloid cells prevents immunopathology during <i>M. tuberculosis</i> infection.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact