refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 758 results
Sort by

Filters

Technology

Platform

accession-icon SRP173201
Transcriptome of Dp1Tyb and wild-type mouse embryonic fibroblasts [ERCC spike-ins]
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 4000

Description

Purpose: to identify the effects of the Dp1Tyb mutation on the transcriptome of mouse embryonic fibroblasts Overall design: RNAseq libraries were prepared from RNA isolated from mouse embryonic fibroblasts. Libraries were prepared from total RNA using the TruSeq Stranded mRNA Sample Prep Kit (Illumina) by the Advanced Sequencing Facility, The Francis Crick Institute. Libraries were sequenced (100 bases paired end) on the Illumina Hiseq 4000 Please note that this dataset contains ERCC spike ins to normalise the data

Publication Title

Gene expression dysregulation domains are not a specific feature of Down syndrome.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE20211
LMP-420: a novel purine nucleoside analogue with potent cytotoxic effects for chronic lymphocytic leukemia cells
  • organism-icon Homo sapiens
  • sample-icon 25 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

[original title] LMP-420: a novel purine nucleoside analogue with potent cytotoxic effects for chronic lymphocytic leukemia cells and minimal toxicity for normal hematopoietic cells.

Publication Title

LMP-420: a novel purine nucleoside analog with potent cytotoxic effects for CLL cells and minimal toxicity for normal hematopoietic cells.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE7253
Puberty and Diabetes in the Kidney
  • organism-icon Rattus norvegicus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

Puberty unmasks or accelerates nephropathies, including the nephropathy of diabetes mellitus (DM). A number of cellular systems implicated in the kidney disease of DM interweave, forming an interdependent functional web. We performed focused microarray analysis to test the hypothesis that one or more genes in the transforming growth factor beta (TGF-) signaling system would be differentially regulated in male rats depending on the age of onset of DM.

Publication Title

Prepubertal onset of diabetes prevents expression of renal cortical connective tissue growth factor.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE81721
Autophagy maintains metabolism and functional activity of a subset of aged hematopoietic stem cells
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Autophagy maintains the metabolism and function of young and old stem cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE18560
Deciphering the Wnt-dependent gene signature in colorectal cancer cells
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Microarray-based gene expression data were generated from RNA from Ls174T colorectal carcinoma cell lines in which Wnt-dependent transcriptional activity can be abrogated by inducible overexpression of a dominant-negative form of Tcf4 or siRNA against -catenin.

Publication Title

Integrated genome-wide analysis of transcription factor occupancy, RNA polymerase II binding and steady-state RNA levels identify differentially regulated functional gene classes.

Sample Metadata Fields

Specimen part, Cell line, Time

View Samples
accession-icon GSE78718
Expression Profiling of Extracellular Microvesicles Reveals Intercellular Transmission of Oncogenic Pathways
  • organism-icon Homo sapiens
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Circulating microvesicles (MVs) have been described as important players in cell-to-cell communication carrying biological information both in normal and pathologic condition. MVs released by cancer cells may incorporate biomolecules such as active lipids, proteins and RNA, which can be delivered and internalized by recipient cells potentially altering gene expression of receiving cells eventually impacting disease progression. In this study, we took advantage of a leukemia in vitro model to investigate MVs as vehicles of protein coding messages. Leukemic cell lines (K562, REH and SHI-1) carrying recurrent translocations were analyzed. In the leukemic cells these translocations are transcribed into oncogenic fusion transcripts. Here, using gene expression microarrays we monitored leukemic fusion transcripts as hallmarks of leukemic cells transcriptome to track mRNA transfer from parental cells to MVs. Transcriptome analysis of K562 cells and released MVs disclosed MVs as not just small scale cells. In fact, a number of transcripts related to membrane activity, cell surface receptors and extracellular communication were enriched in the MVs pool. On the other hand, sets of transcripts related to the basal cellular functions and transcripts of the BCR-ABL oncogenic pathway downstream of the fusion protein were detected in MVs as well as in parental K562 cells. Moreover, through co-culture analyses uptake of leukemic MVs in receiving cells was confirmed and an MV-dosage dependent increase of target cell proliferation was demonstrated.

Publication Title

Expression Profiling of Circulating Microvesicles Reveals Intercellular Transmission of Oncogenic Pathways.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE81719
Autophagy maintains metabolism and functional activity of a subset of aged hematopoietic stem cells [gene expression]
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Autophagy is critical for protecting HSCs from metabolic stress. Here, we used a genetic approach to inactivate autophagy in adult HSCs by deleting the Atg12 gene. We show that loss of autophagy causes accumulation of mitochondria and an oxidative phosphorylation (OXPHOS)-activated metabolic state, which drives accelerated myeloid differentiation likely through epigenetic deregulations rather than transcriptional changes, and impairs HSC self-renewal activity and regenerative potential.

Publication Title

Autophagy maintains the metabolism and function of young and old stem cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE74082
PTH and PTHrP treatment of primary adipocytes
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Parathyroid hormone (PTH) and PTH-related protein (PTHrP) are involved in cachexia associated with chronic kidney disease and cancer respectively. Tumor-derived PTHrP triggers adipose tissue browning and thereby leads to wasting of fat tissue in tumor-bearing mice. Similarly, elevated in 5/6 nephrectomized mice, PTH stimulates adipose tissue browning and wasting. Mice lacking the PTH/PTHrP receptor in their fat tissue are resistant to wasting of both adipose tissue and skeletal muscle. Therefore, the PTH/PTHrP signaling in adipocytes should activate various pathways that contribute to hypermetabolism and muscle wasting.

Publication Title

PTH/PTHrP Receptor Mediates Cachexia in Models of Kidney Failure and Cancer.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE16091
Gene expression profiles of human osteosarcoma, set2
  • organism-icon Homo sapiens
  • sample-icon 33 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Pulmonary metastasis continues to be the most common cause of death in osteosarcoma. Indeed, the 5-year survival for newly diagnosed osteosarcoma patients has not significantly changed in over 20 years. Further understanding of the mechanisms of metastasis and resistance for this aggressive pediatric cancer is necessary. Pet dogs naturally develop osteosarcoma providing a novel opportunity to model metastasis development and progression. Given the accelerated biology of canine osteosarcoma, we hypothesized that a direct comparison of canine and pediatric osteosarcoma expression profiles may help identify novel metastasis-associated tumor targets that have been missed through the study of the human cancer alone. Collectively, these data support the strong similarities between human and canine osteosarcoma and underline the opportunities provided by a comparative oncology approach as a means to improve our understanding of cancer biology and therapy.

Publication Title

Canine tumor cross-species genomics uncovers targets linked to osteosarcoma progression.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE16088
Gene expression profiles of human osteosarcoma
  • organism-icon Homo sapiens
  • sample-icon 23 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Pulmonary metastasis continues to be the most common cause of death in osteosarcoma. Indeed, the 5-year survival for newly diagnosed osteosarcoma patients has not significantly changed in over 20 years. Further understanding of the mechanisms of metastasis and resistance for this aggressive pediatric cancer is necessary. Pet dogs naturally develop osteosarcoma providing a novel opportunity to model metastasis development and progression. Given the accelerated biology of canine osteosarcoma, we hypothesized that a direct comparison of canine and pediatric osteosarcoma expression profiles may help identify novel metastasis-associated tumor targets that have been missed through the study of the human cancer alone. Collectively, these data support the strong similarities between human and canine osteosarcoma and underline the opportunities provided by a comparative oncology approach as a means to improve our understanding of cancer biology and therapy.

Publication Title

Canine tumor cross-species genomics uncovers targets linked to osteosarcoma progression.

Sample Metadata Fields

Specimen part, Disease, Disease stage, Cell line

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact