refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 383 results
Sort by

Filters

Technology

Platform

accession-icon SRP023259
Transcriptome Sequencing (RNA-seq) of Ara-C Resistant Murine AML Cell Lines Identifies Mechanisms of Resistance
  • organism-icon Mus musculus
  • sample-icon 20 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

An RNA-seq study of altered gene expression and mutations in Ara-C resistant acute myeloid leukemia murine cell lines. The analysis of the RNA-seq data led to the identification of a large deletion within the Dck coding sequence of the B117H cell line, which produced an alternatively processed form of Dck mRNA. The RNA-seq analysis also identified the presence of an insertion mutation in Dck in the B140H cell line. The RNA-seq analysis also identified a number of significant expression changes which did not appear in a previous microarray analysis (GSE18322), as well as identified other mutations which may be contributing to Ara-C resistance. Overall design: Two highly Ara-C resistant cell lines, B117H and B140H were derived from Ara-C sensitive parental cell lines, B117P and B140P. Variations in gene expression as well identification of acquired mutations between these Ara-C resistant/sensitive sets were studied using various RNA-seq analysis tools.

Publication Title

Using RNA-seq and targeted nucleases to identify mechanisms of drug resistance in acute myeloid leukemia.

Sample Metadata Fields

Cell line, Subject

View Samples
accession-icon SRP090923
Next-gen RNA sequencing of mouse osteosarcoma tumors
  • organism-icon Mus musculus
  • sample-icon 175 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Trascriptome analysis of osteosarcoma samples were performed Overall design: Tumor samples were obtained from a previously published Sleeping Beauty forward genetic screen, cell lines were derived from previous primary tumors and sequenced using Illumina HiSeq 2000

Publication Title

Comparative Transcriptome Analysis Quantifies Immune Cell Transcript Levels, Metastatic Progression, and Survival in Osteosarcoma.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE49089
NRASG12V oncogene mediates self-renewal in acute myelogenous leukemia
  • organism-icon Mus musculus
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

NRASG12V oncogene facilitates self-renewal in a murine model of acute myelogenous leukemia.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP049821
Leukemia stem cell-enriched population expresses self-renewal gene-expression signature [RNA-Seq]
  • organism-icon Mus musculus
  • sample-icon 32 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Mutant RAS oncoproteins activate signaling molecules that drive oncogenesis in multiple human tumors including acute myelogenous leukemia (AML). However, the specific function of these pathways in AML is unclear. To elucidate the downstream functions of activated NRAS in AML, we employed a murine model of AML harboring Mll-AF9 and NRASG12V. We found that NRASG12V enforced leukemia self-renewal gene expression signatures and was required to maintain an MLL-AF9 and MYB-dependent gene expression program. In a multiplexed analysis of RAS-dependent signaling intermediates, the leukemia stem cell compartment was preferentially sensitive to RAS withdrawal. Use of RAS-pathway inhibitors showed that NRASG12V maintained leukemia self-renewal through mTOR and MEK pathway activation, implicating these pathways as potential targets for cancer stem cell-specific therapies. Overall design: Primary leukemia cells harvested from spleens were sorted into immunophenotypic subpopulations (Mac-1High, Mac-1LowKit–Sca-1–, Mac-1LowKit+Sca-1–, and Mac-1LowKit+Sca-1+). RNA was extracted from this subpopulations of cells and submitted for RNA sequencing.

Publication Title

NRASG12V oncogene facilitates self-renewal in a murine model of acute myelogenous leukemia.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE49038
NRASG12V mediates leukemia self renewal [Microarray]
  • organism-icon Mus musculus
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Mutant RAS oncoproteins activate signaling molecules that drive oncogenesis in multiple human tumors including acute myelogenous leukemia (AML). However, the specific function of these pathways in AML is unclear. To elucidate the downstream functions of activated NRAS in AML, we employed a murine model of AML harboring Mll-AF9 and NRASG12V. We found that NRASG12V enforced leukemia self-renewal gene expression signatures and was required to maintain an MLL-AF9 and MYB-dependent gene expression program. In a multiplexed analysis of RAS-dependent signaling intermediates, the leukemia stem cell compartment was preferentially sensitive to RAS withdrawal. Use of RAS-pathway inhibitors showed that NRASG12V maintained leukemia self-renewal through mTOR and MEK pathway activation, implicating these pathways as potential targets for cancer stem cell-specific therapies.

Publication Title

NRASG12V oncogene facilitates self-renewal in a murine model of acute myelogenous leukemia.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP042212
Transcriptome Sequencing (RNA-seq) of Normal Human Osteoblasts
  • organism-icon Homo sapiens
  • sample-icon 15 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

Three normal human osteoblast samples, acquired from PromoCell, were used as controls to compare to RNA-seq data from prepublished osteosarcoma samples (submitted to the European Bioinformatics Institute; EGAS00001000263) for the purpose of evaluating expression levels of genes identified as common insertions sites in a Sleeping Beauty screen of osteosarcomas in mice. Overall design: Three normal human osteoblast samples (pellet form in RNAlater) were acquired from PromoCell (Heidelberg, Germany), and RNA was isolated from them immediately upon receipt.

Publication Title

A Sleeping Beauty forward genetic screen identifies new genes and pathways driving osteosarcoma development and metastasis.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP167390
Next-gen RNA sequencing of Sleeping Beauty accelerated mouse brain tumors
  • organism-icon Mus musculus
  • sample-icon 57 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Expression profiling by high throughput sequencing Overall design: 23 Tumor samples were obtained from a Sleeping Beauty forward genetic screen and sequenced using Illumina HiSeq 2000

Publication Title

<i>Sleeping Beauty</i> Insertional Mutagenesis Reveals Important Genetic Drivers of Central Nervous System Embryonal Tumors.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE76096
CFTR is a tumor suppressor gene in murine and human intestinal cancer
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

CFTR is a tumor suppressor gene in murine and human intestinal cancer.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon SRP067491
CFTR is a tumor suppressor gene in murine and human intestinal cancer [RNA-seq]
  • organism-icon Mus musculus
  • sample-icon 62 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Analysis of the cystic fibrosis gene Cftr in the colon and small intestine of Cftr-deficient murine model. The hypothesis was loss of Cftr altered expression of genes important in intestinal homeostasis and oncogenic signaling pathways. The results identified potential roles of Cftr in up- or down-regulating major gene clusters that belong to groups of immune response, ion channel, intestinal stem cell and other growth regulators. Overall design: The experiments were designed to analyze the role of Cftr-deficiency in tumorigenesis. The goal of this study was to identify genes and pathways associated with Cftr-deficiency in Apc wildtype and ApcMin mice. Total RNAs were isolated from mice, and subjected to deep sequencing, in duplicates, using Illumina HiSeq 2500. Samples that were sequenced in the same batch were analyzed in pair-wise using Tophat-Cuffdiff pipeline as outlined in Nature Protocol from Trapnell C. et al, 2012. The results indicated that Cftr-deficiency overlapped with genes and pathways involved in immune and inflammatory signaling, stem cell regulation, and Wnt/beta catenin signaling. Total RNA was isolated from multiple colon tumors and multiple small intestine tumors from Apc wildtype Cftr-deficient mice, ApcMin Cftr-deficient mice, and ApcMin Cftr wildtype mice. Total RNA was also obtained from Apc wildtype normal colon (epithelial cells) and normal duodenum (whole duodenum minus villi) from three Cftr wildtype and three Cftr-deficient mice. RNA Seq was then conducted on all samples with at least two replicates for each biological sample. Please note that 1) The 23 mice were processed in several batches, and two sequencing runs were carried out at two different dates.  To control for the batch effect of sequencing, some samples were included in both runs (run1 and run2). 2) To reach the desired sequencing depth and to keep loading balance, each sample was split into halves, and sequenced on two lanes (L007 and L008 for run1, L006 and L007 for run2). therefore, for 11 samples, there are 4 technical replicates, including the 2-batches and 2-lane sequencing method. For the remaining 12 samples, there are 2 technical replicates, referring to the 2-lane sequencing. 3) some of the mice are heterozygous mutant of CFTR gene (CFTRhet), named as "CFTR knockdown".

Publication Title

CFTR is a tumor suppressor gene in murine and human intestinal cancer.

Sample Metadata Fields

Age, Specimen part, Subject

View Samples
accession-icon GSE75996
CFTR is a tumor suppressor gene in murine and human intestinal cancer [microarray]
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

Analysis of the cystic fibrosis gene Cftr in the colon and small intestine of Cftr-deficient murine model. The hypothesis was loss of Cftr altered expression of genes important in intestinal homeostasis and oncogenic signaling pathways. The results identified potential roles of Cftr in up- or down-regulating major gene clusters that belong to groups of immune response, ion channel, intestinal stem cell and other growth regulators.

Publication Title

CFTR is a tumor suppressor gene in murine and human intestinal cancer.

Sample Metadata Fields

Age, Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact