We have applied a new software to analyse a human naive single-chain antibody (scFv) library, comprehensively revealing the diversity of antibody variable complementarity-determining regions (CDRs) and their families.
A novel DNAseq program for enhanced analysis of Illumina GAII data: a case study on antibody complementarity-determining regions.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Cyclodextrin protects podocytes in diabetic kidney disease.
Cell line
View SamplesAnalysis of gene expression changes in differentiated human podocytes treated with the serum from patients with (DKD+) or without (DKD-) diabetic kidney disease when compared to normal subjects (C). The hypothesis is that the three groups can be distinghed by their differential gene expression pattern. The results obtained revealed important information regarding differences in gene expression in human podocytes treated with the serum from patients with (DKD+) or without (DKD-) diabetic kidney disease when compared to normal subjects (C).
Cyclodextrin protects podocytes in diabetic kidney disease.
Cell line
View SamplesPurpose: To identify transcriptional changes by RNA-seq in tumor samples, before bevacizumab combination treatment and after bevacizumab combination treatment in both responding and non-responding recurrent glioblastoma patients Overall design: Three comparison analyses were further performed: 1.) Paired analysis of pre- and post-treated samples from responding patients; 2.) Comparison of pre-treated samples of responders vs. non-responders; 3.) Paired analysis of pre- and post-treated samples from non-responding patients The sample ''characteristics: batch'' represents a combination of the RNA-extraction date and the library-preparation date for each sample.
Transcriptional changes induced by bevacizumab combination therapy in responding and non-responding recurrent glioblastoma patients.
Sex, Disease, Disease stage, Subject, Time
View SamplesThe 8p11 myeloproliferative syndrome (EMS), also referred to as the stem cell leukemia/lymphoma syndrome, is a chronic myeloproliferative disorder that rapidly progresses into an acute leukemia. Molecularly, EMS is characterized by fusion of various partner genes to the FGFR1 gene, resulting in constitutive activation of the tyrosine kinase activity within FGFR1. The two most common fusion genes in human EMS are ZMYM2/FGFR1 (previously known as ZNF198/FGFR1) and BCR/FGFR1. To study the transcriptional programs becoming deregulated by the FGFR1 fusion genes, global gene expression analysis on human CD34+ cord blood cells expressing either of the fusion oncogenes ZMYM2/FGFR1 and BCR/FGFR1 was performed. As a reference gene we also included the more studied BCR/ABL1 fusion oncogene associated with chronic myeloid leukemia. We found that the 3 different fusion oncogenes had in common the upregulation of several genes involved in the JAK/STAT signalling pathway and also other sets of genes. However, the gene expression profiles were not identical, suggesting that both the tyrosine kinase containing gene and the partner gene would affect the transcription of downstream target genes.
Modeling the human 8p11-myeloproliferative syndrome in immunodeficient mice.
No sample metadata fields
View SamplesUsing an siRNA screen we identify a role for GPR65 in the defense against intracellular pathogens. Epithelial cells and macrophages lacking GPR65 exhibited impaired clearance of intracellular bacteria as well as an accumulation of aberrant phagosomes and lysosomes. Transcriptional profiling revealed changes in genes associated with lysosomal function. Overall design: Bone marrow-derived macrophages from WT or Gpr65-/- mice were harvested for RNA analysis.
Genetic Coding Variant in GPR65 Alters Lysosomal pH and Links Lysosomal Dysfunction with Colitis Risk.
No sample metadata fields
View SamplesUsing integrated genomics we identify a role for CLEC12A in antibacterial autophagy. Clec12a-/- mice are more susceptible to bacterial infection and CLEC12A deficient cells exhibit impaired antibacterial autophagy. We used transcriptional profilinf to understand the role of CLEC12A in the response to Salmonella and Listeria. Overall design: Bone marrow-derived macrophages from WT or Clec12a-/- mice were infected with Salmonella enterica serovar Typhimurium or Listeria monocytogenes. Cells were harvested at 0,3,6, and 24hours post-infection for RNA analysis. Please note that single-end sequencing was performed but two files: R1 files that contained the sample barcodes (19 or 17bp reads) and R2 files that contained the single-end-sequenced 46bp cDNA reads were generated. Since the barcode info is mostly redundant, only R2 reads were submitted (described in ''raw_file_readme.txt'').
Integrated Genomics of Crohn's Disease Risk Variant Identifies a Role for CLEC12A in Antibacterial Autophagy.
No sample metadata fields
View SamplesThe 1.6 Mbp deletion on chromosome 3q29 is associated with a range of neurodevelopmental disorders, including schizophrenia, autism, microcephaly, and intellectual disability. Despite its importance towards neurodevelopment, the role of individual genes, genetic interactions, and disrupted biological mechanisms underlying the deletion have not been thoroughly characterized. Here, we used quantitative methods to assay Drosophila melanogaster and Xenopus laevis models with tissue-specific individual and pairwise knockdown of 14 homologs of genes within the 3q29 region. We identified developmental, cellular, and neuronal phenotypes for multiple homologs of 3q29 genes, potentially due to altered apoptosis and cell cycle mechanisms during development. Using the fly eye, we screened for 314 pairwise knockdowns of homologs of 3q29 genes and identified 44 interactions between pairs of homologs and 34 interactions with other neurodevelopmental genes. Interestingly, NCBP2 homologs in Drosophila (Cbp20) and X. laevis (ncbp2) enhanced the phenotypes of homologs of the other 3q29 genes, leading to significant increases in apoptosis that disrupted cellular organization and brain morphology. These cellular and neuronal defects were rescued with overexpression of the apoptosis inhibitors Diap1 and xiap in both models, suggesting that apoptosis is one of several potential biological mechanisms disrupted by the deletion. NCBP2 was also highly connected to other 3q29 genes in a human brain-specific interaction network, providing support for the relevance of our results towards the human deletion. Overall, our study suggests that NCBP2-mediated genetic interactions within the 3q29 region disrupt apoptosis and cell cycle mechanisms during development. Overall design: mRNA-sequencing of Drosophila neuron-specific RNAi knockdown (whole head) for four individual 3q29 homologs (DLG1, NCBP2, FBXO45, and PAK2), two pairwise knockdowns of 3q29 homologs (NCBP2/DLG1 and NCBP2/FBXO45), and two VDRC wild-type controls (GD and KK backgrounds). Sequencing was performed using Illumina HiSeq 2000 on three biological replicates per sample, with two-three technical replicates per biological replicate.
NCBP2 modulates neurodevelopmental defects of the 3q29 deletion in Drosophila and Xenopus laevis models.
Specimen part, Subject
View SamplesThe zinc finger transcription factor growth-factor-independent-1 (Gfi1) has been involved in various cellular differentiation processes. Gfi1 acts as a transcriptional repressor and splicing control factor upon binding to cognate binding sites in regulatory elements of its target genes. Here, we report that Gfi1-deficient mice develop autoimmunity. Gfi1-deficient peripheral B-cells show a hyperproliferative phenotype, leading to expansion of plasma cells, increased levels of nuclear autoantibodies, and immunoglobulin deposition in brain and kidneys. Dysregulation of multiple transcription factors and cell-cycle control elements may contribute to B-cell dependent autoimmunity. Gfi1 thus emerges as a novel master-regulator restricting autoimmunity.
Transcription factor Gfi1 restricts B cell-mediated autoimmunity.
Specimen part
View SamplesRNA-seq profiling was conducted on clinically-annotated human post-mortem brain tissues Overall design: We measured the transcriptome in 281 clinically-annotated human post-mortem brain tissues
Post-mortem molecular profiling of three psychiatric disorders.
Sex, Specimen part, Race, Subject
View Samples