[Gro-seq] Precursor B acute leukemia cells measured using global nuclear run-on sequencing [ChIP-Seq] The genome-wide occupancy of ser2 and ser5 phosphorylated RNA pol2 and H3K4me3 was measured in precursor B acute leukemia cells measured using chip-seq. Overall design: [Gro-seq] Nascent RNA expression profiles were generated at cells in various basal culture conditions. [ChIP-Seq] Performed from REH and Nalm6 cells cultured under basal culture conditions. Mnase digestion was used for DNA fragmentation. Antibodies against Ser2 and Ser5 phosphorylated RNA polymerase and H3K4me3 compared to input. ****************************** This study includes reanalysis of Samples in Series GSE39878 (GSM980645, GSM980644), GSE60454 (GSM1480326), and GSE41009 (GSM1006728, GSM100672). The processed data files for the reanalyses are linked to GSE67540 as supplementary files (see the GSE67540_README.txt file for additional information).
Transcription-coupled genetic instability marks acute lymphoblastic leukemia structural variation hotspots.
No sample metadata fields
View SamplesAround 20-25% of childhood acute lymphoblastic leukemias carry the TEL-AML1 (TA) fusion gene. It is a fusion of two central hematopoietic transcription factors, TEL (ETV6) and AML1 (RUNX1). Despite its prevalence, the exact genomic targets of TA have remained elusive. We evaluated gene loci and enhancers targeted by TA genome-wide in precursor B acute leukemia cells using global nuclear run-on sequencing (GRO-seq). Overall design: Nascent RNA expression profiles were generated with GRO-seq after TEL-AML1 expression in the Nalm6 pre-B-ALL cell line in four different time points (0, 4, 12 and 24 h). TEL-AML1-mut and luciferase induction cell lines were used as controls. Two replicates were included for all six samples.
Genome-wide repression of eRNA and target gene loci by the ETV6-RUNX1 fusion in acute leukemia.
No sample metadata fields
View SamplesTris (2-butoxyethyl) phosphate (TBOEP) is a compound produced at high volume that is used as both a flame retardant and a plasticizer. It is persistent and bioaccumulative, yet little is known of its toxicological modes of action. Such insight may aid risk assessment in a weight-of-evidence approach supplementing current testing strategies. We used an RNA sequencing approach as an unbiased and sensitive tool to explore potential negative health effects of sub-cytotoxic concentrations of TBOEP on the transcriptome of the human liver hepatocellular carcinoma cell line, HepG2, with the lowest concentration used potentially holding relevance to human physiological levels. Over-representation and gene set enrichment analysis corresponded well and revealed that TBOEP treatments resulted in an upregulation of genes involved in protein and energy metabolism, along with DNA replication. Such increases in cell and macromolecule metabolism could explain the increase in mitochondrial activity at lower TBOEP concentrations. In addition, TBOEP affected a wide variety of biological processes, the most notable one being the general stress response, wound healing. Finally, TBOEP showed effects on steroid hormone biosynthesis and activation, regulation, and potentiation of immune responses, in agreement with other studies. As such, this study is the first study investigating genome-wide changes in gene transcription in response to TBOEP in human cells. Overall design: HepG2 cells were treated with low (2.5 uM) or high (125 uM) concentrations of Tris (2-butoxyethyl) phosphate (TBOEP) in 0.1% DMSO. For control purposes cells were exposed to 0.1% DMSO alone. Treatment lasted for 72 hours. All treatments were conducted in triplicates, involving separate seeding of cells. RNA was isolated with Trizol (Invitrogen, USA) and RNeasy Kit (Qiagen, GER). Libraries were prepared with the TruSeq Stranded mRNA Sample Preparation Kit (Illumina, USA). 50bp long paired-ends reads were sequenced using the HiSeq(R) 1500 platform (Illumina, USA). Alignement to the UCSC hg19 assembly of the human genome, mapping and annotation was performed with CLC Genomics Workbench (CLC Bio, DEN). Samples were normalised by quantile normalisation. Differential expression p-values were generated using Baggerly''s test statistic. These p-values were subsequently corrected with the Benjamini-Hochberg procedure to limit the false discovery rate (FDR) to 5% of the significant genes .
Toxicogenomics of the flame retardant tris (2-butoxyethyl) phosphate in HepG2 cells using RNA-seq.
Cell line, Treatment, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
COLOMBOS v2.0: an ever expanding collection of bacterial expression compendia.
No sample metadata fields
View SamplesGene expression from Escherichia coli.
COLOMBOS v2.0: an ever expanding collection of bacterial expression compendia.
No sample metadata fields
View SamplesGlucocorticoids (GCs) are commonly used to treat patients suffering from lymphoid malignancies i.e. leukemia and multiple myeloma. Although GCs are known to be strong inducers of apoptosis in lymphoid cells, the molecular determinants of GC therapy resistance are poorly understood. Although GC treatment triggers important changes in gene expression, few studies have addressed the regulatory role of small regulatory microRNAs (miRNAs) in GC therapy response. Only recently, aberrant microRNA expression has been linked to the development of haematological malignancies and microRNAs have become master regulators of drug resistance. We identified GC inducible mRNA and microRNA transcription profiles in GC sensitive MM1S as compared to GC resistant MM1R cells. Transcriptome analysis revealed that GCs regulate multiple genes involved in cell cycle control, cell organization and cell death in MM1S, which remain unaffected in MM1R cells. Correspondingly, GCs selectively trigger cell death in MM1S but not in MM1R. Out of 32 microRNAs responsive to GC in MM1S cells but not in MM1R cells, mir-150 was identified as the most persistent GC responsive microRNA. Furthermore, Ingenuity Pathways Analysis (IPA) revealed that ectopic transfection of a synthetic mir-150 mimics GC therapy response in MM1S cells, associated with selective changes in mRNA levels of typical GR transactivated and transrepressed target genes. Although mir-150 largely mirrors GC responsive changes in gene expression of the transcription factor Myb, GR chaperone FKBP5, cell cycle modulator proteins (IL23A, SKP2, CDKN1A), chemokine signaling proteins (CXCR4, CX3CR1, CCL3) and mTOR/UPR stress related proteins (DDIT4, TXNIP), we also observed mir-150 selective effects on transcription factors (NR3C2 (MR), Myb, Fos, Jun, C/EBP-beta, IRF4, NFE2L1, ATF3, ATF4,), chaperone molecules HSPA8, HSP90AB1), the sodium channel SCNN1G and UPR stress proteins (TRIB3, DDIT3). Remarkably, mir-150 overexpression was not able to overcome GC therapy resistance, since we could not detect GC like effects of mir-150 in GR (NR3C1) deficient MM1R cells. Altogether GC-inducible mir-150 adds a novel complex layer of regulation for fine tuning GC specific therapeutic responses in multiple myeloma.
Ectopic microRNA-150-5p transcription sensitizes glucocorticoid therapy response in MM1S multiple myeloma cells but fails to overcome hormone therapy resistance in MM1R cells.
Cell line, Treatment
View SamplesWe integrated three transplant rejection microarray studies examining gene expression in samples from pediatric renal, adult renal, and adult heart transplants. We performed one study ourselves and retrieved two others from the NCBI Gene Expression Omnibus (GEO)(GSE4470 and GSE1563). We identified 45 genes that were upregulated in common in acute rejection. Half were involved in one immune-related pathway. Among ten proteins we tested by serum ELISA, three successfully distinguished acute rejection from stable transplants. These were CXCL9, PECAM1, and CD44, with areas under the receiver operating characteristic curves of 0.844, 0.802, and 0.738, respectively. Immunohistochemistry showed that the PECAM1 protein was increased in acute rejection in renal, liver and heart transplants versus normal tissues. Our results show that integrating publicly-available gene expression data sets is a fast, powerful, and cost-effective way to identify serum-detectable diagnostic biomarkers.
Integrative urinary peptidomics in renal transplantation identifies biomarkers for acute rejection.
No sample metadata fields
View SamplesBackground
A systems biology approach reveals common metastatic pathways in osteosarcoma.
Specimen part, Cell line
View SamplesIn male Cyp2g1-null mice, the lateral nasal gland, one of the largest anterior glands in the nasal cavity, was found to be protected from acetaminophen toxicity. The goal of this study was to identify the genes that are involved in the mechanisms, especially those genes functional in drug metabolism, clearance and post-activation events.
A novel defensive mechanism against acetaminophen toxicity in the mouse lateral nasal gland: role of CYP2A5-mediated regulation of testosterone homeostasis and salivary androgen-binding protein expression.
Sex, Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Cell growth in aggregates determines gene expression, proliferation, survival, chemoresistance, and sensitivity to immune effectors in follicular lymphoma.
No sample metadata fields
View Samples