refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 110 results
Sort by

Filters

Technology

Platform

accession-icon SRP058698
Comparing effects of perfusion and hydrostatic pressure on human chondrocytes using gene profiles
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq1500

Description

Hydrostatic pressure and perfusion have been shown to alter the chondrogenic potential of articular chondrocytes. In order to compare the effects of hydrostatic pressure plus perfusion (HPP) and perfusion (P) we investigated the complete gene expression profiles of human chondrocytes under HPP and P. A simplified bioreactor was constructed applying loading (0.1 MPa for 2 h) and perfusion (2ml) through the same piping by pressurizing the medium directly. High-density monolayer cultures of human chondrocytes were exposed to HPP or P for 4 days. Controls were maintained in static culture. Gene expression was evaluated by sequencing (RNAseq) and quantitative real-time PCR analysis. RNAseq identified similarities between the two treatments. Specifically, HPP and P increased COL2A1 expression and decreased COL1A1 and MMP-13 expression. Despite of the similarities, RNAseq revealed a list of cartilage genes including ACAN, ITGA10 and TNC, which were differentially expressed by HPP and P. Of these candidates adhesion related molecules were found to be upregulated in HPP. Both HPP and P treatment had beneficial effects on chondrocyte differentiation and decreased catabolic enzyme expression. The study provides new insight into how hydrostatic pressure and perfusion enhance cartilage differentiation and inhibit catabolic effects Overall design: 9 samples

Publication Title

Comparing effects of perfusion and hydrostatic pressure on gene profiles of human chondrocyte.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE139871
Infection of monocytes from tuberculosis patients with two virulent clinical isolates of Mycobacterium tuberculosis induces alterations in myeloid effector functions.
  • organism-icon Homo sapiens
  • sample-icon 24 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

Monocytes play a critical role during infection with Mycobacterium tuberculosis (Mtb). They are recruited to the lung where they participate in the contention of infection. Alternatively, inflammatory monocytes may help in prolonging inflammation or serve as niches for Mtb infection. Also, monocyte response to infection may vary depending on the particularities of the clinical isolate of Mtb from which they are infected. In this pilot study, using microarrays we have examined the global mRNA profiles of circulating human monocytes from healthy individuals and patients with active tuberculosis (TB).

Publication Title

Infection of Monocytes From Tuberculosis Patients With Two Virulent Clinical Isolates of <i>Mycobacterium tuberculosis</i> Induces Alterations in Myeloid Effector Functions.

Sample Metadata Fields

Specimen part, Disease, Disease stage

View Samples
accession-icon GSE32590
Regulation of gene expression in the postnatally developing monkey hippocampal formation
  • organism-icon Macaca mulatta
  • sample-icon 78 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The hippocampus is part of a brain network essential for memory function. Paradoxically, the hippocampus is also the brain structure that is most sensitive to hypoxic-ischemic episodes. Here we show that the expression of genes associated with glycolysis and glutamate metabolism in astrocytes and the coverage of excitatory synapses by astrocytic processes undergo significant decreases in the CA1 field of the monkey hippocampus during postnatal development. Given the established role of astrocytes in the regulation of glutamate concentration in the synaptic cleft, our findings indicate that a developmental decrease in astrocytic processes underlies the selective vulnerability of CA1 during hypoxic-ischemic episodes in adulthood, its decreased susceptibility to febrile seizures with age, as well as contribute to the emergence of selective, adult-like memory function.

Publication Title

Developmental regulation of gene expression and astrocytic processes may explain selective hippocampal vulnerability.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP090469
RNAseq analysis of Rpl13a-snoless and wild type islets
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Purpose: To gain further mechanistic insight into phenotypic differences between wild type pancreatic islets and islets with loss of function of 4 Box C/D snoRNAs from the Rpl13a locus (U32a, U33, U34 and U35a). Methods:High quality total RNA (RIN = 8.5) was prepared from hand-picked islets (n = 4 mice/genotype) using TRIZOL reagent, treated with Turbo DNAse (Thermo Fisher), and used to prepare SeqPlex RNAseq libraries (Sigma). Sequencing was performed by the Washington University Genome Technology Access Center using two lanes of Illumina HiSeq 2500, 1x50. Reads were demultiplexed and trimmed, and STAR alignment and quantification analysis was carried out using the Partek Flow platform. Uniquely aligned reads were quantified to identify genes with at least a two-fold change between genotypes with p < 0.05 and FDR step-up of 0.05. Results:We observed 2-fold or greater differences in the expression of only six genes. Conclusions: Our data indicate that loss-of-function of snoRNAs from the Rpl13a locus is associated with modest changes in mRNA abundance. Overall design: Examination of murine pancreatic islet mRNA differential expression between wild type mice and mice with loss-of-function of U32a, U33, U34, and U35a snoRNAs.

Publication Title

Rpl13a small nucleolar RNAs regulate systemic glucose metabolism.

Sample Metadata Fields

Age, Specimen part, Subject

View Samples
accession-icon SRP105369
Transcriptome analysis of G protein-coupled receptors in distinct genetic subgroups of acute myeloid leukemia: identification of potential disease-specific targets
  • organism-icon Homo sapiens
  • sample-icon 82 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Acute myeloid leukemia (AML) is associated with poor clinical outcome and the development of more effective therapies is urgently needed. G protein-coupled receptors (GPCRs) represent attractive therapeutic targets, accounting for approximately 30% of all targets of marketed drugs. Using next-generation sequencing, we studied the expression of 772 GPCRs in 148 genetically diverse AML specimens, normal blood and bone marrow cell populations as well as cord blood-derived CD34-positive cells. Among these receptors, 30 are overexpressed and 19 are downregulated in AML samples compared with normal CD34-positive cells. Upregulated GPCRs are enriched in chemokine (CCR1, CXCR4, CCR2, CX3CR1, CCR7 and CCRL2), adhesion (CD97, EMR1, EMR2 and GPR114) and purine (including P2RY2 and P2RY13) receptor subfamilies. The downregulated receptors include adhesion GPCRs, such as LPHN1, GPR125, GPR56, CELSR3 and GPR126, protease-activated receptors (F2R and F2RL1) and the Frizzled family receptors SMO and FZD6. Interestingly, specific deregulation was observed in genetically distinct subgroups of AML, thereby identifying different potential therapeutic targets in these frequent AML subgroups. Overall design: Total healthy bone marrow was sorted to isolate distinct cell populations. RNA-Seq analysis was performed on sorted cells to determine gene expression profile of healthy bona marrow subpopulations.

Publication Title

Transcriptome analysis of G protein-coupled receptors in distinct genetic subgroups of acute myeloid leukemia: identification of potential disease-specific targets.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon SRP033235
Effect of LMP7 and MECL1-immunoproteasome subunits deficiency on the transcriptome of mouse bone marrow-derived dendritic cells
  • organism-icon Mus musculus
  • sample-icon 32 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

As regulators of protein degradation, proteasomes regulate practically all cellular functions. It is therefore logical to assume that replacement of the constitutive proteasome (CP) by its IFN- inducible homolog immunoproteasome (IP) could have far reaching effects on cell function. Accordingly, recent studies have revealed important roles for IPs in immune cells beyond MHC I-peptide processing. Moreover, the expression of IPs in non-immune cells from non-inflamed tissues suggests that the involvement of IPs is not limited to the immune system. We demonstrate here that IP-deficiency affects the transcription of 8104 genes in maturing dendritic cells (DCs). This occurs mainly through non-redundant regulation of key immune-related transcription factors by CPs and IPs. Additionally, IP-deficiency decreases DC''s efficiency to activate CD8+ T cells in vivo. Our study reveals that the broad cellular roles of IPs could rely on transcription regulation and, more importantly, illustrates how IP-deficiency could generate MHC I-peptide processing-independent phenotypes. Overall design: Examination of the transcriptome of WT and immunoproteasome-deficient cells at 4 different time points of dendritic cell maturation, in 4 experimental replicates (total of 32 samples).

Publication Title

Immunoproteasomes shape the transcriptome and regulate the function of dendritic cells.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP056295
Leucegene: AML sequencing (part 5)
  • organism-icon Homo sapiens
  • sample-icon 523 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

RNA sequencing of human leukemia Overall design: The goals of this project are to obtain a comprehensive study of mutations and gene expression in human acute myeloid leukemia (AML). Methods: AML cells were thawed. DNA and RNA (polyA) was extracted and sequences were obtained with an illumina HiSeq 2000 sequencer. Results are pending.

Publication Title

RNA-sequencing analysis of core binding factor AML identifies recurrent ZBTB7A mutations and defines RUNX1-CBFA2T3 fusion signature.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP048759
Leucegene: AML sequencing (part 3)
  • organism-icon Homo sapiens
  • sample-icon 434 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

RNA sequencing of human leukemia Overall design: The goals of this project are to obtain a comprehensive study of mutations and gene expression in human acute myeloid leukemia (AML). Methods: AML cells were thawed. DNA and RNA (polyA) was extracted and sequences were obtained with an illumina HiSeq 2000 sequencer. Results are pending.

Publication Title

RNA-sequencing analysis of core binding factor AML identifies recurrent ZBTB7A mutations and defines RUNX1-CBFA2T3 fusion signature.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP033266
Leucegene: AML sequencing (part 2)
  • organism-icon Homo sapiens
  • sample-icon 144 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

RNA sequencing of human leukemia Overall design: The goals of this project are to obtain a comprehensive study of mutations and gene expression in human acute myeloid leukemia (AML). Methods: AML cells were thawed. DNA and RNA (polyA) was extracted and sequences were obtained with an illumina HiSeq 2000 sequencer. Results are pending.

Publication Title

RNA-sequencing analysis of core binding factor AML identifies recurrent ZBTB7A mutations and defines RUNX1-CBFA2T3 fusion signature.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP056197
Leucegene: AML sequencing (part 4)
  • organism-icon Homo sapiens
  • sample-icon 81 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

RNA sequencing of human leukemia Overall design: The goals of this project are to obtain a comprehensive study of mutations and gene expression in human acute myeloid leukemia (AML). Methods: AML cells were thawed. DNA and RNA (polyA) was extracted and sequences were obtained with an illumina HiSeq 2000 sequencer. Results are pending.

Publication Title

RNA-sequencing analysis of core binding factor AML identifies recurrent ZBTB7A mutations and defines RUNX1-CBFA2T3 fusion signature.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact