refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 218 results
Sort by

Filters

Technology

Platform

accession-icon GSE41521
Genome wide analysis of C57BL-6 mice infected with European strain (P1/7) of Streptococcus suis
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina MouseRef-8 v2.0 expression beadchip

Description

Streptococcus suis is a major swine pathogen that can be transmitted to humans causing severe symptoms. A large human outbreak was described in China, where approximately 25% out of 215 infected humans developed an unusual streptococcal toxic shock-like syndrome (STSLS). Albeit increased expression of inflammatory mediators following infection by the Chinese S. suis strain was suggested as responsible for STSLS case severity, the mechanisms involved are still poorly understood. In this study, we investigated the host innate immune response to infection by either one of 3 strains of S. suis: 89-1591 (Canadian, intermediate virulence), P1/7 (European, high virulence), and SC84 (Chinese, epidemic strain). Using Illumina microarray and validating those results with qPCR and Luminex assay, infected mice showed elevated expression of mainly pro-inflammatory chemokine and cytokine genes. Generally, pro-inflammatory genes were expressed at a higher level in mice infected with S. suis strain SC84 > P1/7 > 89-1591. Interestingly, IFN was expressed at much higher levels only in mice infected with the S. suis strain SC84, which could potentially explain some of the STSLS symptoms. IFN-KO mice infected with SC84 showed better survival than WT mice while no differences was seen in mice infected with highly virulent P1/7 strain. Overall, our results show an important role of IFN in S. suis infections and might explain in part the increased virulence of SC84 responsible for a recent outbreak in China.

Publication Title

Exacerbated type II interferon response drives hypervirulence and toxic shock by an emergent epidemic strain of Streptococcus suis.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE41520
Genome wide analysis of C57BL-6 mice infected with North-American strain (89-1591) of Streptococcus suis
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina MouseRef-8 v2.0 expression beadchip

Description

Streptococcus suis is a major swine pathogen that can be transmitted to humans causing severe symptoms. A large human outbreak was described in China, where approximately 25% out of 215 infected humans developed an unusual streptococcal toxic shock-like syndrome (STSLS). Albeit increased expression of inflammatory mediators following infection by the Chinese S. suis strain was suggested as responsible for STSLS case severity, the mechanisms involved are still poorly understood. In this study, we investigated the host innate immune response to infection by either one of 3 strains of S. suis: 89-1591 (Canadian, intermediate virulence), P1/7 (European, high virulence), and SC84 (Chinese, epidemic strain). Using Illumina microarray and validating those results with qPCR and Luminex assay, infected mice showed elevated expression of mainly pro-inflammatory chemokine and cytokine genes. Generally, pro-inflammatory genes were expressed at a higher level in mice infected with S. suis strain SC84 > P1/7 > 89-1591. Interestingly, IFN was expressed at much higher levels only in mice infected with the S. suis strain SC84, which could potentially explain some of the STSLS symptoms. IFN-KO mice infected with SC84 showed better survival than WT mice while no differences was seen in mice infected with highly virulent P1/7 strain. Overall, our results show an important role of IFN in S. suis infections and might explain in part the increased virulence of SC84 responsible for a recent outbreak in China.

Publication Title

Exacerbated type II interferon response drives hypervirulence and toxic shock by an emergent epidemic strain of Streptococcus suis.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE41522
Genome wide analysis of C57BL-6 mice infected with Chinese strain (SC84) of Streptococcus suis
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina MouseRef-8 v2.0 expression beadchip

Description

Streptococcus suis is a major swine pathogen that can be transmitted to humans causing severe symptoms. A large human outbreak was described in China, where approximately 25% out of 215 infected humans developed an unusual streptococcal toxic shock-like syndrome (STSLS). Albeit increased expression of inflammatory mediators following infection by the Chinese S. suis strain was suggested as responsible for STSLS case severity, the mechanisms involved are still poorly understood. In this study, we investigated the host innate immune response to infection by either one of 3 strains of S. suis: 89-1591 (Canadian, intermediate virulence), P1/7 (European, high virulence), and SC84 (Chinese, epidemic strain). Using Illumina microarray and validating those results with qPCR and Luminex assay, infected mice showed elevated expression of mainly pro-inflammatory chemokine and cytokine genes. Generally, pro-inflammatory genes were expressed at a higher level in mice infected with S. suis strain SC84 > P1/7 > 89-1591. Interestingly, IFN was expressed at much higher levels only in mice infected with the S. suis strain SC84, which could potentially explain some of the STSLS symptoms. IFN-KO mice infected with SC84 showed better survival than WT mice while no differences was seen in mice infected with highly virulent P1/7 strain. Overall, our results show an important role of IFN in S. suis infections and might explain in part the increased virulence of SC84 responsible for a recent outbreak in China.

Publication Title

Exacerbated type II interferon response drives hypervirulence and toxic shock by an emergent epidemic strain of Streptococcus suis.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE68842
A Long Non-coding RNA, LncMyoD, Regulates Skeletal Muscle Differentiation by Blocking IMP2-mediated mRNA Translation
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Increasing evidence suggests that Long non-coding RNAs (LncRNAs) represent a new class of regulators of stem cells. However, the roles of LncRNAs in stem cell maintenance and myogenesis remain largely unexamined. For this study, hundreds of novel intergenic LncRNAs were identified that are expressed in myoblasts and regulated during differentiation. One of these LncRNAs, termed LncMyoD, is encoded next to the Myod gene and is directly activated by MyoD during myoblast differentiation. Knockdown of LncMyoD strongly inhibits terminal muscle differentiation largely due to a failure to exit the cell cycle. LncMyoD directly binds to IGF2-mRNA-binding-protein 2 (IMP2) and negatively regulates IMP2-mediated translation of proliferation genes such as N-Ras and c-Myc. While the RNA sequence of LncMyoD is not well-conserved between human and mouse, its locus, gene structure and function is preserved. The MyoD-LncMyoD-IMP2 pathway elucidates a mechanism as to how MyoD blocks proliferation to create a permissive state for differentiation.

Publication Title

A long non-coding RNA, LncMyoD, regulates skeletal muscle differentiation by blocking IMP2-mediated mRNA translation.

Sample Metadata Fields

Age

View Samples
accession-icon SRP071868
Transcriptional Basis of Neuronal Diversity in the Mammalian Brain
  • organism-icon Mus musculus
  • sample-icon 477 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Neuronal diversity is a defining feature of the mammalian brain deemed necessary for realizing the complex function of the nervous system. In order to begin to understand the transcriptional basis of this diversity, we collected more than 170 neuronal and non-neuronal cell type-specific transcriptomes defined operationally by transgenic mouse lines and anatomical regions. The dataset indicates that the genes specifically expressed in neuronal cell types are biased toward long genes. We revealed that these long genes have higher capacities to be differentially expressed between cell types and thus assume an important role in diversification of the neuronal transcriptomes. Since mobile element insertions are the main cause of the gene elongations, we propose that exaptation of the inserted mobile elements significantly contributed to the neuronal diversity. Overall design: Examination of whole cell transcriptomes in 174 cell types.

Publication Title

Mapping the transcriptional diversity of genetically and anatomically defined cell populations in the mouse brain.

Sample Metadata Fields

Sex, Specimen part, Cell line, Subject

View Samples
accession-icon SRP113619
Species and Cell-Type Properties of Classically Defined Human and Rodent Neurons and Glia [Human RNA-Seq]
  • organism-icon Homo sapiens
  • sample-icon 49 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

Determination of the molecular properties of genetically targeted cell types has led to fundamental insights into mouse brain function and dysfunction. Here, we report an efficient strategy for precise exploration of gene expression events in specific cell types in a broad range of species. We demonstrate that classically defined, homologous neuronal and glial cell types differ between rodent and human by the expression of hundreds of orthologous, cell specific genes. Confirmation that these genes are differentially active was obtained using epigenetic mapping, quantitative PCR, and immunofluorescence localization. Studies of sixteen human postmortem brains revealed cell-specific molecular responses to aging, and the induction of a shared, robust response to an unknown external event experienced by three donors. Our data establish a comprehensive approach for analysis of unique molecular events associated with specific circuits and cell types in a wide variety of human conditions. Overall design: RNA purified from nuclei or cytoplasm from mouse, rat, or human cerebellum. ATAC-seq was also performed using cerebellar nuclei from the three species.

Publication Title

Species and cell-type properties of classically defined human and rodent neurons and glia.

Sample Metadata Fields

Sex, Age, Specimen part, Subject

View Samples
accession-icon SRP113621
Species and Cell-Type Properties of Classically Defined Human and Rodent Neurons and Glia [Mouse RNA-Seq]
  • organism-icon Mus musculus
  • sample-icon 29 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500, NextSeq 500

Description

Determination of the molecular properties of genetically targeted cell types has led to fundamental insights into mouse brain function and dysfunction. Here, we report an efficient strategy for precise exploration of gene expression events in specific cell types in a broad range of species. We demonstrate that classically defined, homologous neuronal and glial cell types differ between rodent and human by the expression of hundreds of orthologous, cell specific genes. Confirmation that these genes are differentially active was obtained using epigenetic mapping, quantitative PCR, and immunofluorescence localization. Studies of sixteen human postmortem brains revealed cell-specific molecular responses to aging, and the induction of a shared, robust response to an unknown external event experienced by three donors. Our data establish a comprehensive approach for analysis of unique molecular events associated with specific circuits and cell types in a wide variety of human conditions. Overall design: RNA purified from nuclei or cytoplasm from mouse, rat, or human cerebellum. ATAC-seq was also performed using cerebellar nuclei from the three species.

Publication Title

Species and cell-type properties of classically defined human and rodent neurons and glia.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE9098
Estrogen-modulated gene expression in c-kit+ stem cells and CD44+ stromal cells
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The recent interest in the role of bone marrow derived endothelial progenitor cells in the benefits of estrogen on cardiovascular health brought us to evaluate if estrogen could affect cardiac repair more broadly by regulating biological processes involved in the functional organization of the bone marrow stem cell niche.

Publication Title

Estrogen-induced gene expression in bone marrow c-kit+ stem cells and stromal cells: identification of specific biological processes involved in the functional organization of the stem cell niche.

Sample Metadata Fields

Sex, Age

View Samples
accession-icon GSE45414
Low-dose actinomycin D preferentially disrupts EWS-FLI1DNA binding.
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Fusion of the EWS gene to FLI1 produces a fusion oncoprotein that drives an aberrant gene expression program responsible for the development of Ewing sarcoma. We used a homogenous proximity assay to screen for compounds that disrupt the binding of EWS-FLI1 to its cognate DNA targets. A number of DNA-binding chemotherapeutic agents were found to non-specifically disrupt protein binding to DNA. In contrast, actinomycin D was found to preferentially disrupt EWS-FLI1 binding by comparison to p53 binding to their respective cognate DNA targets in vitro. In cell-based assays, low concentrations of actinomycin preferentially blocked EWS-FLI1 binding to chromatin, and disrupted EWS-FLI1-mediated gene expression. Higher concentrations of actinomycin globally repressed transcription. These results demonstrate that actinomycin preferentially disrupts EWS-FLI1 binding to DNA at selected concentrations. Although the window between this preferential effect and global suppression is too narrow to exploit in a therapeutic manner, these results suggest that base-preferences may be exploited to find DNA-binding compounds that preferentially disrupt subclasses of transcription factors.

Publication Title

Differential disruption of EWS-FLI1 binding by DNA-binding agents.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon SRP065451
A Dual Molecular Analog Tuner for Dissecting Mammalian Protein Function
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconNextSeq500

Description

Loss-of-function studies are fundamental for dissecting gene function. Yet, methods to rapidly and effectively perturb genes in mammalian cells are scarce. We present a novel system, deliverable with only two lentiviral vectors, which enables simultaneous control over two different proteins in the same cell. By harnessing the plant auxin and jasmonate hormone-induced degradation pathways, combined with RNA interference, this system allows constitutive depletion of two endogenous proteins and their replacement with two exogenous proteins whose degradation is rapidly and reversibly induced by external ligands, representing a dual analog molecular tuner. Focusing on NANOG, CHK1 and NOTCH1 in embryonic stem cells and p53 in cancer cells we have validated the efficiency, rapidity, reversibility, titratability and multiplicity of the engineered tuners, and demonstrated their potential to facilitate previously-unfeasible experimental approaches and to generate novel biological insights. Overall design: For mRNA-Seq preparation, coronatine/DMSO treated cells were collected.

Publication Title

A dual molecular analogue tuner for dissecting protein function in mammalian cells.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact