Immunosuppression is needed in HLA identical sibling renal transplantation. We conducted a tolerance trial in this patient cohort using Alemtuzumab induction, donor hematopoietic stem cells, tacrolimus/mycophenolate immunosuppression converted to sirolimus, planning complete drug withdrawal by 24 months post-transplantation. After an additional 12 months with no immunosuppression, normal biopsies and renal function, recipients were considered tolerant. Twenty recipients were enrolled. Of the first 10 (>36 months post-transplantation), 5 had immunosuppression successfully withdrawn for 16-36 months (tolerant), 2 had disease recurrence and 3 had subclinical rejection in protocol biopsies (non-tolerant). Microchimerism disappeared after 1 year, and CD4+CD25highCD127-FOXP3+ T cells and CD19+IgD/M+CD27- B cells increased to 5 years post-transplantation in both groups, whereas immune/inflammatory gene expression pathways in the peripheral blood and urine were differentially downregulated in tolerant compared to non-tolerant recipients. Therefore, in this HLA identical renal transplant tolerance trial, absent chimerism, Treg and Breg immunophenotypes were indistinguishable between tolerant and non-tolerant recipients, but global genomic changes indicating immunomodulation were observed only in tolerant recipients.
Genomic biomarkers correlate with HLA-identical renal transplant tolerance.
Specimen part, Time
View SamplesTo determine if there are differences in the gene expression profile of peripheral blood mononuclear cells in patients with Acute Myeloid Leukemia (AML) or Myelodysplastic Syndrome (MDS) who responded to CPI-613 when compared to those patients who did not respond we generated gene expression profiles from four responding patients and compared them to four non-responders. None of the gene expression profiles have been previously published. Here we describe the origins and provide associated clinical annotations with the hope that other investigators will be able to utilize this data in their own research.
A phase I study of the first-in-class antimitochondrial metabolism agent, CPI-613, in patients with advanced hematologic malignancies.
Sex, Age, Specimen part, Disease
View SamplesTo identify early processes in carcinogenesis, we used an in vitro model, based on the initiating event in cervical cancer, human papillomavirus (HPV) transformation of keratinocytes. We compared gene expression in primary keratinocytes (K) and HPV16-transformed keratinocytes from early (E) and late (L) passages, and from benzo[a]pyrene treated L cells (BP). The transformed cells exhibit similar transcriptional changes to clinical cervical carcinoma. We revealed a contraction in expression of the apoptotic network during HF1 cell transformation, which affected the ability of L and BP cells to execute apoptosis, but did not lead to resistance to apoptotic stimuli. The contraction in the apoptotic machinery during the process of transformation was accompanied by a switch from apoptosis to necrosis in response to CDDP. The shrinkage of the pro- and anti-apoptotic networks appears to be part of a general contraction in the number of genes transcribed in L and BP cells. We also identified a large group of genes with induced expression, which are involved in cell metabolism and cell cycle, suggesting increased investment of the transformed cell in cellular proliferation. We hypothesize that the decrease in expression of many diverse pathways, including the pro- and anti-apoptotic networks, cuts the energy requirements for cell maintenance, allowing energy to be diverted towards rapid cell proliferation. This study supports the hypothesis that the process of cancer transformation may be accompanied by a shift from apoptosis to necrosis.
Shift from apoptotic to necrotic cell death during human papillomavirus-induced transformation of keratinocytes.
Specimen part, Cell line
View Samples15-20 cm tall 35S::Myc-GR-bdl plants were dipped headfirst in 15 µM dexamethasone or mock solution and after three hours of incubation second internodes were harvested and snap frozen in liquid nitrogen. Frozen plant material was pulverized with pestle and mortar and RNA was isolated by phenol/chlorophorm extraction as described previously (Mallory & Vaucheret 2010, PlantCell) with the modification of two additional concluding 70% EtOH washes Overall design: RNA from three samples was pooled and analyzed by RNAseq.
Spatial specificity of auxin responses coordinates wood formation.
Specimen part, Treatment, Subject
View Samples15-20 cm tall PXY:GR-MP?III/IV plants were dipped headfirst in 15 µM dexamethasone or mock solution and after three hours of incubation second internodes were harvested and snap frozen in liquid nitrogen. Frozen plant material was pulverized with pestle and mortar and RNA was isolated by phenol/chlorophorm extraction as described previously (Mallory & Vaucheret 2010, PlantCell) with the modification of two additional concluding 70% EtOH washes Overall design: RNA from three samples was pooled and analyzed by RNAseq.
Spatial specificity of auxin responses coordinates wood formation.
Specimen part, Treatment, Subject
View SamplesOne third to one half of all infants born before the 28th wek of gestation develop BPD bronchopulmonary dysplasia. Our objective is to evaluate the feasibility of using expression profiling in umbilical cord tissue to discover molecular signatures for developmental staging and for risk of BPD.
Perturbation of gene expression of the chromatin remodeling pathway in premature newborns at risk for bronchopulmonary dysplasia.
No sample metadata fields
View SamplesDepletion of immunosuppressive tumor-associated macrophages (TAM) or reprogramming towards a pro-inflammatory activation state represent different strategies to therapeutically target this frequent myeloid population. Here we report that inhibition of colony-stimulating factor-1 receptor (CSF-1R) signaling sensitizes TAM to profound reprogramming in the presence of a CD40 agonist prior to their depletion. Despite the short-lived nature of macrophage hyperactivation, combined CSF-1R/CD40 stimulation of macrophages is sufficient to trigger a productive and durable T cell response in various mouse cancer models. The central role of macrophages in regulating T cell-dependent tumor rejections was substantiated by depletion experiments and transcriptomic analysis of ex vivo sorted TAM. Since CD40 expression on human TAM varies between different tumor types, co-expression of human CSF-1R and CD40 in colorectal adenocarcinoma and mesothelioma can serve as criteria to select these tumor types for clinical development Overall design: Female C57BL/6N mice (6-8 weeks in age, obtained from Charles River) were inoculated with 106 MC38 colorectal adenocarcinoma tumor cells subcutaneously. Tumor growth curves were monitored by caliper measurement and once tumor size reached 250 mm3 in average, groups were allocated for antibody treatment. Ten mice/group were treated with 30 mg/kg IgG1 isotype control antibody clone MOPC-21 (BioXCell), 4 mg/kg anti-CD40 rat IgG2a antibody clone FGK45 (BioXCell), 30mg/kg anti-CSF-1R antibody clone 2G2, 4 mg/kg rat IgG2a control clone 2A3 (BioXCell). For depletion experiments 4mg/kg mouse anti-CD4 antibody clone GK1.5 (Biolegend), 4mg/kg anti-NK1.1 antibody clone PK136 (BioXCell) and 4mg/kg anti-CD8a antibody clone 53-6.7 (BioXCell) were administered when tumor size reached 190mm3 in average. Antibodies were given every second day for four times. In between doses two and three of the depleting antibodies, animals were further treated with vehicle control (0,9% sodium saline), MOPC21, FGK45, 2G2 or combination of FGK45 and 2G2. The anti-CSF-1R antibody or respective IgG1 control antibody were administered weekly until tumors regressed completely or animals reached termination criteria, while the anti-CD40 antibody was only administered once at day 11 simultaneously with the anti-CSF-1R antibody. All antibodies were given intraperitoneally. All procedures were performed in accordance with the National Institutes of Health Guidelines for the Care and Use of Laboratory Animals and European Union directives and guidelines.
Rapid activation of tumor-associated macrophages boosts preexisting tumor immunity.
Specimen part, Treatment, Subject
View SamplesThe mammalian brain is complex, with multiple cell types performing a variety of diverse functions, but exactly how each cell type is affected in aging remains largely unknown. Here we performed a single-cell transcriptomic analysis of young and old mouse brains. We provide comprehensive datasets of aging-related genes, pathways and ligand–receptor interactions in nearly all brain cell types. Our analysis identified gene signatures that vary in a coordinated manner across cell types and gene sets that are regulated in a cell-type specific manner, even at times in opposite directions. These data reveal that aging, rather than inducing a universal program, drives a distinct transcriptional course in each cell population, and they highlight key molecular processes, including ribosome biogenesis, underlying brain aging. Overall, these large-scale datasets provide a resource for the neuroscience community that will facilitate additional discoveries directed towards understanding and modifying the aging process. Overall design: Total of 16 mice brains with raw data for 50,212 single cells and processed data for 37,089 single cells
Single-cell transcriptomic profiling of the aging mouse brain.
Specimen part, Subject
View SamplesDuring host-pathogen encounters, the complex interactions between different immune cell-types can determine the outcome of infection. Advances in single cell RNA-seq (scRNA-seq) allow to probe this complexity of immunity, and afforded the basis for deconvolution algorithms that infer cell-type compositions from bulk RNA-seq measurements. However, immune activation, an important aspect of immune surveillance, is not represented in current algorithms. Here, using scRNA-seq of human peripheral blood cells infected with Salmonella, we developed a novel deconvolution algorithm to infer dynamic immune states from bulk measurements. We applied our dynamic deconvolution algorithm both to cohorts of healthy individuals challenged ex vivo with Salmonella and to cohorts of tuberculosis patients during different stages of disease. We revealed cell-type specific immune responses associated not only with ex vivo infection phenotype but also with clinical disease stage. We propose that our approach provides a predictive power to identify risk for disease, and can be applied to comprehensively study human infection outcome. Overall design: PBMCs were isolated from 8 individuals bearing or not TLR10 polymorphism and were infected ex vivo with Salmonella enterica serovar Typhimurium. RNA was extracted before infection, 4 hours post infection and 8 hours post infection.
Predicting bacterial infection outcomes using single cell RNA-sequencing analysis of human immune cells.
Specimen part, Subject
View SamplesDuring host-pathogen encounters, the complex interactions between different immune cell-types can determine the outcome of infection. Advances in single cell RNA-seq (scRNA-seq) allow to probe this complexity of immunity, and afforded the basis for deconvolution algorithms that infer cell-type compositions from bulk RNA-seq measurements. However, immune activation, an important aspect of immune surveillance, is not represented in current algorithms. Here, using scRNA-seq of human peripheral blood cells infected with Salmonella, we developed a novel deconvolution algorithm to infer dynamic immune states from bulk measurements. We applied our dynamic deconvolution algorithm both to cohorts of healthy individuals challenged ex vivo with Salmonella and to cohorts of tuberculosis patients during different stages of disease. We revealed cell-type specific immune responses associated not only with ex vivo infection phenotype but also with clinical disease stage. We propose that our approach provides a predictive power to identify risk for disease, and can be applied to comprehensively study human infection outcome. Overall design: Whole-blood (WB) cells and PBMCs were isolated from 4 healthy individuals and were infected ex vivo with Salmonella enterica serovar Typhimurium or with PBS as control. RNA was extracted 4 hours later.
Predicting bacterial infection outcomes using single cell RNA-sequencing analysis of human immune cells.
Specimen part, Disease stage, Subject
View Samples