refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 58 results
Sort by

Filters

Technology

Platform

accession-icon GSE9166
Trovafloxacin-Induced Gene Expression Changes: Comparison of Primary Human Hepatocytes to HepG2 Cells
  • organism-icon Homo sapiens
  • sample-icon 32 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Primary human hepatocytes (PHH) are a main instrument in drug metabolism research and in the prediction of drug-induced phase I/II enzyme induction in humans. The HepG2 liver-derived cell line is commonly used as a surrogate for human hepatocytes, but their use in ADME and toxicity studies can be limited because of lowered basal levels of metabolizing enzymes. Despite their widespread use, the transcriptome of HepG2 cells compared to PHH is not well characterized. In this study, microarray analysis was conducted to ascertain the differences and similarities in mRNA expression between HepG2 cells and human hepatocytes before and after exposure to a panel of fluoroquinolone compounds. Comparison of the nave HepG2 cell and PHH transcriptomes revealed a substantial number of basal gene expression differences. When HepG2 cells were dosed with a series of fluoroquinolones, trovafloxacin, which has been associated with human idiosyncratic hepatotoxicity, induced substantially more gene expression changes than the other quinolones, similar to previous observations with PHH. While TVX-treatment resulted in many gene expression differences between HepG2 cells and PHH, there were also a number of TVX-induced commonalities, including genes involved in RNA processing and mitochondrial function. Taken together, these results provide insight for interpretation of results from drug metabolism and toxicity studies conducted with HepG2 cells in lieu of PHH, and could provide further insight into the mechanistic evaluation of TVX-induced hepatotoxicity.

Publication Title

Trovafloxacin-induced gene expression changes in liver-derived in vitro systems: comparison of primary human hepatocytes to HepG2 cells.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE39875
5 Day Oral Study of A-998679 in Male Sprague Dawley Rats
  • organism-icon Rattus norvegicus
  • sample-icon 22 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

AhR activation underlies the CYP1A autoinduction by A-998679 in rats.

Sample Metadata Fields

Sex, Specimen part, Treatment

View Samples
accession-icon GSE39525
5 Day Oral Study of A-998679 in Male Sprague Dawley Rats (liver)
  • organism-icon Rattus norvegicus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

Male Sprague-Dawley rats [Crl:CD(SD)IGS BR], weighing ~250 g at study initiation were obtained from Charles River Laboratories, Inc. (Wilmington, MA). Rats were housed singly in ventilated, stainless steel, wire-bottom hanging cages and fed non-certified Rodent Chow (Harlan Labs, Madison, WI) and water ad libitum and acclimated for at least 5 days after arrival. Rats were randomly assigned to various treatment groups (3 rats/group) and were dosed once daily by oral gavage with vehicle (0.2% hydroxypropylmethylcellulose at a dose volume of 10 ml/kg) or with 30, 100, or 200 mg/kg of A-998679. All rats were fasted overnight after their last dose, weighed and sacrificed under isoflurane anesthesia. Liver and small intestine (jejunum) were flash frozen in liquid nitrogen and stored at 80C until processing for gene expression profiling on the Affymetrix platform.

Publication Title

AhR activation underlies the CYP1A autoinduction by A-998679 in rats.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE39850
5 Day Oral Study of A-998679 in Male Sprague Dawley Rats (Jejunum)
  • organism-icon Rattus norvegicus
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

Male Sprague-Dawley rats [Crl:CD(SD)IGS BR], weighing ~250 g at study initiation were obtained from Charles River Laboratories, Inc. (Wilmington, MA). Rats were housed singly in ventilated, stainless steel, wire-bottom hanging cages and fed non-certified Rodent Chow (Harlan Labs, Madison, WI) and water ad libitum and acclimated for at least 5 days after arrival. Rats were randomly assigned to various treatment groups (3 rats/group) and were dosed once daily by oral gavage with vehicle (0.2% hydroxypropylmethylcellulose at a dose volume of 10 ml/kg) or with 30, 100, or 200 mg/kg of A-998679. All rats were fasted overnight after their last dose, weighed and sacrificed under isoflurane anesthesia. Liver and small intestine (jejunum) were flash frozen in liquid nitrogen and stored at 80C until processing for gene expression profiling on the Affymetrix platform.

Publication Title

AhR activation underlies the CYP1A autoinduction by A-998679 in rats.

Sample Metadata Fields

Sex, Specimen part, Treatment

View Samples
accession-icon GSE11859
Acquisition of granule neuron precursor identity and Hedgehog-induced medulloblastoma in mice.
  • organism-icon Mus musculus
  • sample-icon 27 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Origins of the brain tumor, medulloblastoma, from stem cells or restricted pro-genitor cells are unclear. To investigate this, we activated oncogenic Hedgehog signaling in multipotent and lineage-restricted CNS progenitors. We observed that normal unipo-tent cerebellar granule neuron precursors (CGNP) derive from hGFAP+ and Olig2+ rhombic lip progenitors. Hedgehog activation in a spectrum of early and late stage CNS progenitors generated similar medulloblastomas, but not other brain cancers, indicating that acquisition of CGNP identity is essential for tumorigenesis. We show in human and mouse medulloblastoma that cells expressing the glia-associated markers Gfap and Olig2 are neoplastic and that they retain features of embryonic-type granule lineage progenitors. Thus, oncogenic Hedgehog signaling promotes medulloblastoma from lineage-restricted granule cell progenitors.

Publication Title

Acquisition of granule neuron precursor identity is a critical determinant of progenitor cell competence to form Shh-induced medulloblastoma.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP074069
Transcriptome analysis of patient-derived xenograft models of HER2+ breast cancer brain metastases
  • organism-icon Homo sapiens
  • sample-icon 10 Downloadable Samples
  • Technology Badge IconIon Torrent Proton

Description

To gain insights into tumor heterogeneity in anti-cancer drug responses of patient-derived xenograft models of HER2+ breast cancer brain metastases, we performed transcriptome gene expression profiling by Ion AmpliSeqâ„¢ Transcriptome sequencing that targets more than 20,000 human genes. Our data found that all anti-cancer drugs responders have significantly higher expression levels of AKT-mTOR-dependent signature genes as compared to the non-responders, suggesting that most HER2+ breast cancer brain metastases are depend on the AKT-mTOR pathway Overall design: Gene expression profiles of five PDX samples were generated by Ion AmpliSeq Transcriptome sequencing, in duplcate, using Ion torrent Proton machine.

Publication Title

Combination inhibition of PI3K and mTORC1 yields durable remissions in mice bearing orthotopic patient-derived xenografts of HER2-positive breast cancer brain metastases.

Sample Metadata Fields

Specimen part, Disease, Subject

View Samples
accession-icon GSE11887
Differential Cardiac Gene Regulation by Arg- and Gly389 Polymorphic Forms of the beta1-adrenergic Receptor
  • organism-icon Mus musculus
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The beta1-adrenergic receptor (beta1AR; ADRB1) polymorphism Arg 389Gly is located in an intracellular loop and is associated with distinct human and mouse cardiovascular phenotypes. To test the hypothesis that beta1-Arg389 and beta1-Gly389 alleles could differentially couple to pathways beyond that of classic Gs-adenylyl cyclase (AC)/cAMP signaling, we performed comparative gene expression profile analyses on hearts from wildtype and transgenic mice that expressed either human beta1-Arg389 and beta1-Gly389 receptors, or AC5 adenyl cyclase, sampling at an early age and stage, prior to the onset of pathologic features. We observed substantial overlap of dysregulated genes across all three transgenic heart models, consistent with a shared coupling to cAMP-dependent regulation of cardiac processes and adaptive responses. All three models up-regulated genes associated with RNA metabolism and translation, and down-regulated genes associated with mitochondria and energy metabolism, consistent with cAMP-driven increase in cardiac contractility, protein synthesis, and compensatory down-regulation of mitochondrial energy production. Both beta1AR transgenics activated additional genes associated with kinase-dependent pathways, and uniquely, beta1-Arg389 hearts caused up-regulation of genes associated with inflammation, programmed cell death, and extracellular matrix. These results substantially expand the scope of 7-transmembrane domain receptor signaling propagation beyond known cognate G-protein couplings. Moreover, they implicate alterations of a repertoire of processes evoked by a single amino acid variation in the cardiac beta1AR that might be exploited for genotype-specific heart failure diagnostics and therapeutics.

Publication Title

Differential coupling of Arg- and Gly389 polymorphic forms of the beta1-adrenergic receptor leads to pathogenic cardiac gene regulatory programs.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE65394
Time-series of the seed-to-seedling transition in Arabidopsis thaliana
  • organism-icon Arabidopsis thaliana
  • sample-icon 21 Downloadable Samples
  • Technology Badge Icon Arabidopsis Gene 1.1 ST Array (aragene11st)

Description

The expression levels of Arabidopsis thaliana (Col-0) genes in several developmental stages during the seed-to-seedling transition were measured by using high-density Affymetrix arrays (Aragene.st1.1).

Publication Title

A Predictive Coexpression Network Identifies Novel Genes Controlling the Seed-to-Seedling Phase Transition in Arabidopsis thaliana.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE23153
Gene expression in TNF treated rat aortic rings cultured in collagen or fibrin gels.
  • organism-icon Rattus norvegicus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Gene 1.0 ST Array (ragene10st)

Description

Angiogenesis in cultures of rat aorta begins with neovessels sprouting from the aortic explant within the first three days of culture.

Publication Title

Macrophage-derived tumor necrosis factor-alpha is an early component of the molecular cascade leading to angiogenesis in response to aortic injury.

Sample Metadata Fields

Sex, Specimen part, Treatment

View Samples
accession-icon GSE23152
Gene expression during first day of collagen gel culture of rat aortic rings
  • organism-icon Rattus norvegicus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Gene 1.0 ST Array (ragene10st)

Description

Angiogenesis in collagen gel cultures of rat aorta begins with neovessels sprouting from the aortic explant within the first three days of culture.

Publication Title

Macrophage-derived tumor necrosis factor-alpha is an early component of the molecular cascade leading to angiogenesis in response to aortic injury.

Sample Metadata Fields

Sex, Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact