refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 559 results
Sort by

Filters

Technology

Platform

accession-icon GSE35385
GATA-1 in proliferating and differentiating murine ES cell derived erythroid progenitors
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

A core erythroid transcriptional network is repressed by a master regulator of myelo-lymphoid differentiation.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE35384
Transcriptome analysis of differentiating normal and leukemic erythroid progenitors
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

We compared the transcriptomes of differentiating cultures of ES cell derived erythroid progentor cells (ES-EP) and murine erythroleukemia (MEL) cells stably transfected with GATA-1 fused to ER.

Publication Title

A core erythroid transcriptional network is repressed by a master regulator of myelo-lymphoid differentiation.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE81908
Converting Oct6 into a pluripotency inducer by interrogating Oct4 residues
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge IconIllumina MouseRef-8 v2.0 expression beadchip

Description

In this study, we set out to identify those molecular features of the POU transcription factor Oct4 that are responsible for inducing pluripotency in somatic cells. Oct4 is known to have a strong preference to cooperate with Sox2 on heterodimeric SoxOct elements predominantly found in enhancers of genes expressed in embryonic stem cells (ESCs). To test whether this partnership is specific to Oct4, we compared its DNA recognition and reprogramming activities to the paralogous transcription factor Oct6, which cannot induce and maintain pluripotency in mouse cells. By analyzing ChIP-Seq data and performing quantitative dimerization assays, we found that in somatic cells, instead of heterodimerzing with Sox-factors, Oct6 more potently homodimerizes on OctOct elements. We identified that a single amino acid is crucial in directing binding to the respective composite DNA element. As a consequence, just changing this one amino acid hampers Oct4 in generating induced pluripotent stem cells (iPSCs). In contrast, the reverse mutation in Oct6 did not augment its reprogramming activity. This was achieved with at least two additional exchanges. In summary, we demonstrate that cell-type specific POU factor function is determined by a limited set of residues that affect DNA and partner factor interactions. Such relatively minor changes lead to a pronounced impact on regulatory function and reprogramming activity.

Publication Title

Changing POU dimerization preferences converts Oct6 into a pluripotency inducer.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE17784
Gene expression in FACS-purified cortical projection neurons
  • organism-icon Mus musculus
  • sample-icon 38 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302), Affymetrix Mouse Expression 430A Array (moe430a)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Novel subtype-specific genes identify distinct subpopulations of callosal projection neurons.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE47495
Transcriptional profiling of left ventricle and peripheral blood cells in rats with post-myocardial infarction
  • organism-icon Rattus norvegicus
  • sample-icon 34 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Gene 1.0 ST Array (ragene10st)

Description

Myocardial infarction (MI) often results in left ventricular (LV) remodeling followed by heart failure (HF). It is of great clinical importance to understand the molecular mechanisms that trigger transition from compensated LV injury to HF and to identify relevant diagnostic biomarkers. In this study, we performed transcriptional profiling of LVs in rats with a wide range of experimentally induced infarct sizes and of peripheral blood mononuclear cells (PBMCs) in animals that developed HF.

Publication Title

Transcriptional profiling of left ventricle and peripheral blood mononuclear cells in a rat model of postinfarction heart failure.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE17783
Analysis of gene expression in FACS-purified cortical projection neurons using Affymetrix 430 2.0 microarrays
  • organism-icon Mus musculus
  • sample-icon 19 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Expression 430A Array (moe430a), Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

3 subtypes of cortical projection neurons were purified by fluorescence-activated cell sorting (FACS) at 4 different stages of development from mouse cortex. A detailed description of the data set is described in Arlotta, P et al (2005) and Molyneaux, BJ et al (2009). The hybridization cocktails used here were originally applied to the Affymetrix mouse 430A arrays and submitted as GEO accession number GSE2039. The same hybridization cocktails were then applied to the Affymetrix mouse 430 2.0 arrays, and those data are contained in this series.

Publication Title

Novel subtype-specific genes identify distinct subpopulations of callosal projection neurons.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE25330
Expression data from In vitro induced C2 M cells in the presence of commensal bacteria
  • organism-icon Homo sapiens
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

M cells are the main site of bacterial translocation in the intestine. We used the in vitro M cell model to study the effect of the commensal bacteria; Lactobacillus salivarius, Eschericha coli and Bacteroides fragilis, on M cell gene expression.

Publication Title

Differential intestinal M-cell gene expression response to gut commensals.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE50225
Wild-type and Mecp2 -/y callosal projection neurons
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Mutations of the transcriptional regulator Mecp2 cause the X-linked autism spectrum disorder Rett syndrome (RTT), and Mecp2 has been implicated in several other neurodevelopmental disorders. To identify potential target genes regulated directly or indirectly by MeCP2, we performed comparative gene expression analysis via oligonucleotide microarrays on Mecp2-/y (Mecp2-null) and wild-type CPN purified via fluorescence-activated cell sorting (FACS).

Publication Title

Reduction of aberrant NF-κB signalling ameliorates Rett syndrome phenotypes in Mecp2-null mice.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE18942
TAP-ORC2 and control ChIP experiments in Drosophila Kc167 cells
  • organism-icon Drosophila melanogaster
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Drosophila Genome 2.0 Array (drosophila2)

Description

Expression data from Kc167 cells under normal conditions. Used to assess expression levels of genes with ORC bound at promoter.

Publication Title

Drosophila ORC localizes to open chromatin and marks sites of cohesin complex loading.

Sample Metadata Fields

Cell line

View Samples
accession-icon SRP137804
Influenza virus replication intensity and round of infection dictates the cellular response in vivo
  • organism-icon Mus musculus
  • sample-icon 39 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Influenza A virus has a broad cellular tropism in the respiratory tract. Infected epithelial cells sense the infection and initiate an antiviral response. To define the antiviral response at the earliest stages of infection we used two different single cycle replication reporter viruses. These tools demonstrated heterogeneity in virus replication levels in vivo. Transcriptional profiling demonstrated tiers of interferon stimulated gene responses that were dependent on the magnitude of virus replication. Uninfected cells and cells with blunted replication expressed a distinct and potentially protective ISG signature. Finally, we used these single cycle reporter viruses to determine the antiviral landscape during virus spread, which unveiled disparate protection mediated by IFN. Together these results highlight the complexity of virus-host interactions within the infected lung and suggest that magnitude and round of replication tune the antiviral response. Overall design: Mice were infected with 10^5 pfu of the indicated virus. Lungs from infefected C57BL/6 were taken at 24 hours post infection. Single cell suspensions were sorted for live CD45-CD31- and the indicated virus-driven fluorophore. Cells were FACS sorted directly into cell lysis buffer for RNA extraction. cDNA libraries were prepared using the SMARTer Universal Low Input RNA Kit (Takara Bio). SAmples were then profiled by illumina sequencing

Publication Title

Distinct antiviral signatures revealed by the magnitude and round of influenza virus replication in vivo.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact