Early during culture of primary mouse HSCs gene expression changes.
Gene expression profiling of early hepatic stellate cell activation reveals a role for Igfbp3 in cell migration.
Specimen part
View SamplesWe identified the Hippo pathway and its effector YAP as a key pathway that controls stellate cell activation. YAP is a transcriptional co-activator and we found that it drives the earliest changes in gene expression during stellate cell activation.
The Hippo pathway effector YAP controls mouse hepatic stellate cell activation.
Specimen part, Treatment
View SamplesThe molecular determinants of a healthy human liver cell phenotype remain largely uncharacterized. In addition, the gene expression changes associated with activation of primary human hepatic stellate cells, a key event during fibrogenesis, remain poorly characterized. Here, we provide the transriptomic profile underpinning the healthy phenotype of human hepatocytes, liver sinusoidal endothelial cells (LSECs) and quiescent hepatic stellate cells (qHSCs) as well as activated HSCs (aHSCs)
Genome-wide analysis of DNA methylation and gene expression patterns in purified, uncultured human liver cells and activated hepatic stellate cells.
Sex, Age, Specimen part, Subject
View SamplesUnveiling the regulatory pathways maintaining hepatic stellate cells (HSC) in a quiescent (q) phenotype is essential to develop new therapeutic strategies to treat fibrogenic diseases. To uncover the miRNA-mRNAs regulatory interactions in qHSCs, HSCs were FACS-sorted from healthy livers and activated HSCs were generated in vitro. MiRNA Taqman array analysis showed HSCs expressed a low number of miRNA, from which 46 were down-regulated and 212 up-regulated upon activation. Computational integration of miRNA and gene expression profiles revealed that 66% of qHSCs miRNAs correlated with more than 6 altered targeted mRNAs (17,2810,7 targets/miRNA), whereas aHSC-associated miRNAs had an average of 1,49 targeted genes. Interestingly, interaction networks generated by miRNA-targeted genes in qHSCs were associated with key HSCs activation processes. Next, selected miRNAs were validated in healthy and cirrhotic human livers and miR-192 was chosen for functional analysis. Down-regulation of miR-192 in HSC was found to be an early event during fibrosis progression in mouse models of liver injury. Moreover, mimic assays for miR-192 in HSCs revealed its role in HSC activation, proliferation and migration. Together, these results uncover the importance of miRNAs in the maintenance of qHSC phenotype and form the basis for understanding the regulatory networks in HSCs.
Integrative miRNA and Gene Expression Profiling Analysis of Human Quiescent Hepatic Stellate Cells.
Specimen part
View SamplesHepatic stellate cells (HSC) are the main stromal cell component of the liver. In healthy liver, quiescent HSC participate in the homeostasis of extracellular matrix (ECM) and store vitamin A. Liver injury causes HSC activation, where they participate in the wound-healing response, by producing ECM components as well as cytokines involved in liver regeneration and inflammation. Moreover, HSC are the main cell type responsible for fibrosis progression. The lack of homogeneous cultures and renewable sources of human HSC has limited the studies of the role of HSC in liver injury, repair anf fibrosis. Here we report a procedure to direct the differentiation of human pluripotent stem cells (PSC) to HSC. The HSClike population (iPS-HSC) was enriched in PDGFR positive cells that expressed key HSC markers. Whole genome transcriptomic analysis revealed that iPS-HSC displayed features intermediate to quiescent and activated HSC. Functional analysis demonstrated that iPS-HSC accumulated retinyl esters into lipid droplets and responded to injury mediators. Moreover, when cultured with HepaRG hepatocytes as aggregates, iPS-HSC support long-term hepatocyte metabolic function and respond to hepatocyte toxicity by activating and promoting organoid fibrogenesis.
Generation of Hepatic Stellate Cells from Human Pluripotent Stem Cells Enables In Vitro Modeling of Liver Fibrosis.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Stellate Cells, Hepatocytes, and Endothelial Cells Imprint the Kupffer Cell Identity on Monocytes Colonizing the Liver Macrophage Niche.
No sample metadata fields
View SamplesMacrophages are strongly adapted to their tissue of residence. Yet, we know little about the cell-cell interactions that imprint the tissue-specific identities of macrophages in their respective niches. Using conditional depletion of liver Kupffer cells, we traced the developmental stages of monocytes differentiating into Kupffer cells and mapped the cellular interactions imprinting the Kupffer cell identity. Kupffer cell loss induced the tumor necrosis factor (TNF) and interleukin-1 (IL-1) receptor-dependent activation of stellate cells and endothelial cells, resulting in the transient production of chemokines and adhesion molecules orchestrating monocyte engraftment. Engrafted circulating monocytes transmigrated into the perisinusoidal space, and acquired the liver-associated transcription factors ID3 and LXRα. Coordinated interactions with hepatocytes induced ID3 expression, while endothelial cells and stellate cells induced LXRα via a synergistic NOTCH-BMP pathway. This study shows that the Kupffer cell niche is composed of stellate cells, hepatocytes and endothelial cells that together imprint the liver-specific macrophage identity.
Stellate Cells, Hepatocytes, and Endothelial Cells Imprint the Kupffer Cell Identity on Monocytes Colonizing the Liver Macrophage Niche.
No sample metadata fields
View SamplesTranslocator protein (TSPO), previously known as the peripheral benzodiazepine receptor is a protein of unclear function in the outer mitochondrial membrane. Using TSPO gene-deleted mice, we recently demonstrated that the dogma surrounding mammalian TSPO as a cholesterol transporter essential for steroid hormone production is highly inaccurate. TSPO global knockout mice are apparently healthy and do not have any deficits in steroid hormone production. We present whole transcriptome shotgun sequencing data comparing adrenal gene expression between Tspo floxed (Tspofl/fl) and Tspo knockout (Tspo-/-) mice.
Peripheral benzodiazepine receptor/translocator protein global knock-out mice are viable with no effects on steroid hormone biosynthesis.
No sample metadata fields
View SamplesThe biological functions of histone demethylases Jmjd3 and Utx remain poorly understood. We assessed such functions in developing T cells, using conditional (CD4-Cre-mediated) gene disruption, by inactivating Kdm6a and Kdm6b, respectively encoding Utx and Jmjd3, in immature CD4+CD8+ thymocytes. We compared microarray gene expression in mature (Va2hi CD24lo) mutant and wild-type CD4+CD8- thymocytes carrying the OT-II TCR transgene.
Histone H3 Lysine 27 demethylases Jmjd3 and Utx are required for T-cell differentiation.
Specimen part
View SamplesLysine methylation of histones is associated with both transcriptionally active chromatin and with silent chromatin, depending on what residue is modified. Histone methyltransferases and demethylases ensure that histone methylations are dynamic and can vary depending on cell cycle- or developmental stage. KDM4A demethylates H3K36me3, a modification enriched in the 3end of active genes. The genomic targets and the role of KDM4 proteins in development remain largely unknown.
Gene regulation by the lysine demethylase KDM4A in Drosophila.
No sample metadata fields
View Samples