Purpose: The purpose of this experiment is to identify a C9-ALS/FTD specific genomic profile in fibroblast lines that is distinct from sporadic ALS without C9orf72 expansion and non-neurologic control cells. The study will then evaluate the effect on this identified profile of ASO treatment targeting the sense strand RNA transcript of the C9orf72 gene. Methods: Expression profiling was performed on RNAs from fibroblasts of four C9orf72 patients, four control individuals and four sporadic ALS patients using Multiplex Analysis of PolyA-linked Sequences method. Results: Hierarchical clustering of expression values for all genes showed that the four C9orf72 patient lines had an expression profile distinct from control and sporadic ALS lines. Statistical comparison of expression values between the four C9orf72 lines and the four control lines revealed that 122 genes were upregulated (defined by a False Discovery Rate FDR<0.05) and 34 genes were downregulated (defined by a False Discovery Rate FDR <0.05) in C9orf72 patient fibroblasts. Conclusions: A genome wide RNA signature can be defined in fibroblasts with C9orf72 expansion. ASO-mediated reduction of C9orf72 RNA levels in fibroblasts with the hexanucleotide expansion efficiently reduced accumulation of GGGGCC RNA foci. This did not, however, generate a reversal of the C9orf72 RNA profile. Overall design: Use of Multiplex Analysis of PolyA-linked Sequences to identify expression changes in fibroblasts from amyotrophic lateral sclerosis and frontotemporal dementia patients harboring an hexanucleotide expansion in the C9orf72 gene.
Targeted degradation of sense and antisense C9orf72 RNA foci as therapy for ALS and frontotemporal degeneration.
No sample metadata fields
View SamplesFor these data, we analyzed hippocampal gene expression of nine control and 22 AD subjects of varying severity on 31 separate microarrays. We then tested the correlation of each gene's expression with MiniMental Status Examination (MMSE) and neurofibrillary tangle (NFT) scores across all 31 subjects regardless of diagnosis. These tests revealed a major transcriptional response comprising thousands of genes significantly correlated with AD markers. Several hundred of these genes were also correlated with AD markers across only control and incipient AD subjects (MMSE > 20).
Incipient Alzheimer's disease: microarray correlation analyses reveal major transcriptional and tumor suppressor responses.
Sex, Age
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Reprogramming of the microRNA transcriptome mediates resistance to rapamycin.
Specimen part, Cell line
View SamplesThe mammalian target of rapamycin (mTOR) is a central regulator of cell proliferation. Inhibitors of mTOR are being evaluated as anti-tumor agents. Given the emerging role of microRNAs (miRNAs) in tumorgenesis we hypothesized that miRNAs could play important roles in the response of tumors to mTOR inhibitors. Rapamycin resistant myogenic cells developed by long-term rapamycin treatment showed extensive reprogramming of miRNAs expression, characterized by up-regulation of the mir-17~92 and related clusters and down-regulation of tumor-suppressor miRNAs. Antagonists of oncogenic miRNA families and mimics of tumor suppressor miRNAs (let-7) restored rapamycin sensitivity in resistant tumor cells. This study identified miRNAs as new downstream components of the mTOR-signaling pathway, which may determine the response of tumors to mTOR inhibitors.
Reprogramming of the microRNA transcriptome mediates resistance to rapamycin.
Specimen part, Cell line
View SamplesPlant respiration responses to elevated growth [CO2] are key uncertainties in predicting future crop and ecosystem function. In particular, the effects of elevated growth [CO2] on respiration over leaf development are poorly understood. This study tested the prediction that, due to greater whole-plant photoassimilate availability and growth, elevated [CO2] induces transcriptional reprogramming and a stimulation of nighttime respiration in leaf primordia, expanding leaves, and mature leaves of Arabidopsis thaliana. In primordia, elevated [CO2] altered transcript abundance, but not for genes encoding respiratory proteins. In expanding leaves, elevated [CO2] induced greater glucose content and transcript abundance for some respiratory genes, but did not alter respiratory CO2 efflux. In mature leaves, elevated [CO2] led to greater glucose, sucrose and starch content, plus greater transcript abundance for many components of the respiratory pathway, and greater respiratory CO2 efflux. Therefore, growth at elevated [CO2] stimulated dark respiration only after leaves transitioned from carbon sinks into carbon sources. This coincided with greater photoassimilate production by mature leaves under elevated [CO2] and peak respiratory transcriptional responses. It remains to be determined if biochemical and transcriptional responses to elevated [CO2] in primordial and expanding leaves are essential prerequisites for subsequent alterations of respiratory metabolism in mature leaves.
Developmental stage specificity of transcriptional, biochemical and CO2 efflux responses of leaf dark respiration to growth of Arabidopsis thaliana at elevated [CO2].
No sample metadata fields
View SamplesThe purpose of this study was to identify genes in keratinocytes and fibroblasts in human skin equivalents that changed expression in response to the burrowing of live scabies mites.
Sarcoptes scabiei mites modulate gene expression in human skin equivalents.
Specimen part, Treatment
View SamplesTranscriptional reprogramming and stimulation of leaf respiration by elevated CO2 concentration is diminished, but not eliminated, under limiting nitrogen supply.
Transcriptional reprogramming and stimulation of leaf respiration by elevated CO2 concentration is diminished, but not eliminated, under limiting nitrogen supply.
Age, Specimen part
View SamplesGenetic Manipulation to increase number of ISC (intestinal stem cells) and gene expression profiling to identify ISC regulators
Gene expression profiling identifies the zinc-finger protein Charlatan as a regulator of intestinal stem cells in Drosophila.
Sex, Specimen part
View SamplesThe aim of this experiment was to investigate differential gene expression in splenocytes stimulated with BCG from nave and BCG vaccinated mice. The differences between nave and BCG vaccinated mice might indicate the mechanisms by which BCG vaccination confers an enhanced ability of splenocytes from BCG vaccinated mice to inhibit growth of BCG in splenocyte cultures as compared with splenocytes from naive animals.
Mycobacterial growth inhibition in murine splenocytes as a surrogate for protection against Mycobacterium tuberculosis (M. tb).
Sex, Age, Specimen part
View SamplesGenome-wide expression profiling was performed on 50 core needle biopsies from 18 breast cancer patients using Affymetrix GeneChip Human Genome Plus 2.0 Arrays.
Intratumor heterogeneity and precision of microarray-based predictors of breast cancer biology and clinical outcome.
Disease, Disease stage, Subject
View Samples