refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 2115 results
Sort by

Filters

Technology

Platform

accession-icon SRP135821
RUNX1 mutations lead to a myeloid differentiation block by altering the RUNX1 transcriptional program (RNA-Seq)
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

Mutations in the RUNX1 gene (RUNX1mut) have been established in myelodysplasia (MDS), de novo and secondary acute myeloid leukaemia (AML), and are in general associated with an unfavourable clinical outcome. Familial RUNX1 mutations are associated with familial thrombocytopenia and these patients have a predisposition to AML development. However, a number of studies have been performed so far in mice which might be distinct from the human hematopoietic system. Therefore we studied the cellular phenotypes, the RUNX1 binding pattern and expression profile induced by RUNX1mut in cord blood (CB) CD34+ cells and induced pluripotent stem cell (iPSC) and compared these findings to primary RUNX1mut AML's. Overall design: A total of nine samples were subject to RNA-Seq including RUNX1mut-transduced cord blood CD34 cells and time-course iPSCs.

Publication Title

RUNX1 mutations enhance self-renewal and block granulocytic differentiation in human in vitro models and primary AMLs.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon SRP153417
Gene expression changes in THP1 cells at day 2 and 4 following shRNA knock-down of RUVBL2
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

We used an inducible shRNA system and RNA-Seq to examine gene expression changes in acute myeloid leukemia THP1 cells following silencing of RUVBL2. RUVBL2 is a AAA+ ATPase that functions in a number of cellular processes, including chromatin remodeling and transcriptional control, and is critical for survival of acute myeloid leukemia cells and in vivo disease progression. Overall design: Total cellular RNA was extracted using the RNeasy Plus Mini Kit from THP1 cells transduced with RUVBL2-specific inducible shRNA, following 2 and 4 days exposure to doxycycline or medium controls. In total, 6 pairs of control and doxycycline-treated samples were analysed (3 control and 3 doxycycline-treated for each time-point).

Publication Title

The AAA+ATPase RUVBL2 is essential for the oncogenic function of c-MYB in acute myeloid leukemia.

Sample Metadata Fields

Specimen part, Cell line, Subject, Time

View Samples
accession-icon SRP072835
The MLL-AF9 and MLL-AF4 oncofusion proteins bind a distinct enhancer repertoire and target the RUNX1 program in MLLr AML
  • organism-icon Homo sapiens
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon

Description

In MLL-rearranged (MLLr) leukemias the N terminal part of the MLL gene can be fused to over 60 different partner genes. Here, we investigate the genome wide binding of the MLL-AF9 and MLL-AF4 fusion proteins and their epigenetic signatures in order to define a core set of MLLr targets. We uncover both common as well as specific MLL-AF9 and MLL-AF4 target genes, which are all marked by H3K79me2, H3K27ac, and H3K4me3. Apart from promoter binding, we also identify MLL-AF9 and MLL-AF4 binding at specific subsets of non overlapping active distal regulatory elements. Despite this differential enhancer binding MLL-AF9 and MLL-AF4 still share a common gene program, which represents part of the RUNX1 gene program and constitutes of CD34+ and monocyte specific genes. Comparing these datasets revealed several zinc finger transcription factors as potential MLL-AF9 co-regulators. Together these results suggest that MLL-fusions collaborate with specific subsets of TFs to aberrantly regulate the RUNX1 gene program in 11q23 AMLs. Overall design: Genome-wide (ChIP-seq) binding of MLL, AF9, AF4, H3K4me3, H3K27ac, H3K79me2 and RUNX1 in THP-1 and MV4-11 AML cell lines. Expression Profiling (RNA-seq) of THP-1 and MV4-11 cell lines, as well as 5 MLL-AF9 positive patient blasts.

Publication Title

MLL-AF9 and MLL-AF4 oncofusion proteins bind a distinct enhancer repertoire and target the RUNX1 program in 11q23 acute myeloid leukemia.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE57440
Expression analysis of neurospheres generated in vitro
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Neurospheres generated in vitro were treated with non-epinephrine or potassium chloride. Gene expression analysis was then carried out to identify genes that are up or down regulated due to chemical treatement.

Publication Title

A comparative study of techniques for differential expression analysis on RNA-Seq data.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon SRP062085
Association of Taf14 with acetylated histone H3 directs the DNA damage response and gene transcription
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

We sequenced mRNA from triplicate log-phase cultures of BY4741 (WT) transformed with pRS313-HA3-SSN6 and taf14D transformed with pRS313-HA3-SSN6 (empty vector), full-length pRS313-TAF14-HA3-SSN6, or pRS313-taf14W81A-HA3-SSN6 cultured in synthetic complete media lacking histidine. Overall design: Examination of changes in gene expression when the YEATS domain of Taf14 is mutated so it cannot bind acetyl-H3.

Publication Title

Association of Taf14 with acetylated histone H3 directs gene transcription and the DNA damage response.

Sample Metadata Fields

Subject

View Samples
accession-icon SRP090298
Epigenome maps of time-resolved monocyte to macrophage differentiation and innate immune memory (RNA-Seq)
  • organism-icon Homo sapiens
  • sample-icon 80 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Innate immune memory is the phenomenon whereby innate immune cells such as monocytes or macrophages undergo functional reprogramming after exposure to microbial components such as LPS. We apply an integrated epigenomic approach to characterize the molecular events involved in LPS-induced tolerance in a time dependent manner. ChIP-seq, RNA-seq, WGBS and ATAC-seq data were generated. This analysis identified epigenetic programs in tolerance and trained macrophages, and the potential transcription factors involved. Overall design: Time-course in vitro culture of human monocytes. Two innate immune memory states can be induced in culture through an initial exposure of primary human monocytes to either LPS or BG for 24 hours, followed by removal of stimulus and differentiation to macrophages for an additional 5 days. Cells were collected at baseline (day 0), 1 hour, 4 hour, 24 hour and 6 days.

Publication Title

β-Glucan Reverses the Epigenetic State of LPS-Induced Immunological Tolerance.

Sample Metadata Fields

Specimen part, Treatment, Subject

View Samples
accession-icon GSE12378
Integration of ERG gene mapping and gene expression profiling identifies distinct categories of human prostate cancer
  • organism-icon Homo sapiens
  • sample-icon 39 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [transcript (gene) version (huex10st)

Description

OBJECTIVE: Previous expression microarray analyses have failed to take into consideration the genetic heterogeneity and complex patterns of ERG gene alteration frequently found in cancerous prostates. The objective of this study is for the first time, to integrate the mapping of ERG gene alterations with the collection of expression microarray data.

Publication Title

Integration of ERG gene mapping and gene-expression profiling identifies distinct categories of human prostate cancer.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE27127
Exon-array profiling of Heat-shock stress response in HeLa cell line
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [probe set (exon) version (huex10st)

Description

The heat-shock stress response was studied at the level of exons using Affymetrix Exon-array profiling for both sense and anti-sense transcripts. Sense transcript profiling was done as per the protocol of Affymetrix Exon 1.0 ST array and anti-sense transcript array profiling was done using a modified protocol (Xijin Ge et al., BMC Genomics. 2008 Jan 22;9:27).

Publication Title

Heat shock factor binding in Alu repeats expands its involvement in stress through an antisense mechanism.

Sample Metadata Fields

Sex, Specimen part, Cell line

View Samples
accession-icon GSE26776
Transcriptome-wide changes in HeLa cell line investigated in response to Heat-shock stress
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina human-6 v2.0 expression beadchip

Description

The repertoire of transcripts that are differentially regulated in response to Heat-shock were studied using Illumina WG-6 v2.0 BeadChip.

Publication Title

Heat shock factor binding in Alu repeats expands its involvement in stress through an antisense mechanism.

Sample Metadata Fields

Sex, Specimen part, Cell line

View Samples
accession-icon SRP034547
Human CLP1 mutations alter tRNA biogenesis affecting both peripheral and central nervous system function
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2500

Description

We elucidate a neurological syndrome affecting both the PNS and CNS defined by CLP1 mutations that impair tRNA splicing Overall design: Identification and biochemical characterization of mutant CLP1 in human patients

Publication Title

Human CLP1 mutations alter tRNA biogenesis, affecting both peripheral and central nervous system function.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact