Quiescent MRC-5 fibroblasts were compared to young fibroblasts Jena Centre for Systems Biology of Ageing - JenAge (www.jenage.de) Overall design: 6 samples: 3 biological replicates for each age group: young and quiescent MRC-5 cells. 50bp, single-end reads, no strand-specific reads
Long-term quiescent fibroblast cells transit into senescence.
No sample metadata fields
View SamplesHuman fibroblasts at different population doublings were treated with low amounts of rotenone (mild stress) and compared to untreated fibroblasts. Two different cell lines were used (MRC-5, HFF). Illumina sequencing (HiSeq2000) was applied to generate 50bp single-end reads. Jena Centre for Systems Biology of Ageing - JenAge (www.jenage.de) Overall design: 60 samples: 3 biological replicates for each group: MRC-5 cells at 4 different population doublings (PD) with and without rotenone; HFF cells at 6 different population doublings with and without rotenone
Hormetic effect of rotenone in primary human fibroblasts.
No sample metadata fields
View SamplesComparing gene expression level by Illumina sequencing of fibroblasts after irradiation Jena Centre for Systems Biology of Ageing - JenAge (www.jenage.de) Overall design: 6 samples, 3 samples per group, 2 groups: 1) MRC-5 cells population doublings (PD) 16 and irradiation (20GY) and 2) HFF cells PD32 and irradiation (20GY)
Conserved genes and pathways in primary human fibroblast strains undergoing replicative and radiation induced senescence.
No sample metadata fields
View SamplesSenescent human fibroblasts were compared to young proliferating fibroblasts. Five different cell lines were compared. Illumina sequencing (HiSeq2000) was applied to generate 50bp single-end reads. Jena Centre for Systems Biology of Ageing - JenAge (www.jenage.de) Overall design: 48 samples: 3 biological replicates for each group: young proliferating and senescent BJ cells; young proliferating and senescent Wi-38 cells; young proliferating and senescent IMR-90 cells; 5 population doubling from young proliferating to senescent cell for HFF and MRC-5 cells
Conserved Senescence Associated Genes and Pathways in Primary Human Fibroblasts Detected by RNA-Seq.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Mutant human embryonic stem cells reveal neurite and synapse formation defects in type 1 myotonic dystrophy.
No sample metadata fields
View SamplesAnalysis of genes that were differentially expressed in mutant VUB03_DM1 as compared to controls VUB01 and SA01 Neural Precursor cells
Mutant human embryonic stem cells reveal neurite and synapse formation defects in type 1 myotonic dystrophy.
No sample metadata fields
View SamplesAnalysis of genes that were differentially expressed in mutant VUB03_DM1 as compared to controls VUB01 and SA01 undifferentiated hES cells
Mutant human embryonic stem cells reveal neurite and synapse formation defects in type 1 myotonic dystrophy.
No sample metadata fields
View SamplesAnalysis of genes that were differentially expressed in mutant VUB03_DM1 as compared to controls VUB01 and SA01 Mesodermal Precursors Cells.
Mutant human embryonic stem cells reveal neurite and synapse formation defects in type 1 myotonic dystrophy.
No sample metadata fields
View SamplesHere we propose the direct conversion of human somatic cells into naive induced pluripotent cells (niPSC). Dataset: 7 expanded niPSC lines (4 from BJ cells, 1 from HFF-1, 1 from WI38, 1from IMR90), 1 freshly-isolated primary colonies of niPSC from BJ, 1 established naive embryonic line H9, 1 primed induced pluripotent cell line (from BJ), 1 sample of BJ fibroblasts, 1 sample of WI38 fibroblasts, 1 sample IMR90 fibroblasts.
Direct generation of human naive induced pluripotent stem cells from somatic cells in microfluidics.
No sample metadata fields
View SamplesHuman medulloblastoma (MB) can be segregated into four major categories based on gene expression patterns: Hedgehog (HH) subtype, Wnt subtype, Group 3, and Group 4. However, they all exhibit strikingly different gene expression profiles from Atypical Teratoid/Rhabdoid Tumor (AT/RT). We re-analyzed published gene expression microarray dataset of pediatric brain tumors to identify a gene expression profile that clearly distinguished human AT/RT from human MB. We used this profile, choosing only genes that have clear murine orthologs, to compare tumors from Snf5F/Fp53L/LGFAP-Cre mice (in C57Bl/6 strain background) with MB from Ptc1+/- mice (in mixed C57Bl/6 and 129Sv strain background). Snf5F/Fp53L/LGFAP-Cre tumors are clearly very different from mouse MB and the markers that distinguish human AT/RT from human MB also distinguish the mouse tumors.
Generation of a mouse model of atypical teratoid/rhabdoid tumor of the central nervous system through combined deletion of Snf5 and p53.
No sample metadata fields
View Samples