Ataxin 1 (Atxn1) is a protein of unknown function associated with cerebellar neurodegeneration in spinocerebellar ataxia type 1 (SCA1). SCA1 is caused by an expanded polyglutamine within Atxn1 by gain-of-function mechanisms. Lack of Atxn1 in mice triggers motor deficits in the absence of neurodegeneration or apparent neuropathological abnormalities.We extracted RNA from cerebellum of 5 Atxn1-null mice and 5 WT. Cerebellar gene expression profiles at 15 weeks of age were generated usSCA1 ing Affymetrix MOE430A arrays. Identifying the molecular pathways regulated by Atxn1 can provide insights into the early molecular mechanisms underlying neuronal dysfunction.
Down-regulation of the dopamine receptor D2 in mice lacking ataxin 1.
Age, Specimen part
View SamplesFK1706 potentiated nerve growth factor-induced neurite outgrowth, putatively mediated via FKBP-52 and the Ras/Raf/MAPK signaling pathway. It also improved mechanical allodynia accompanied by the recovery of intraepidermal nerve fiber density in a painful diabetic neuropathy in rats.
FK1706, a novel non-immunosuppressive immunophilin ligand, modifies gene expression in the dorsal root ganglia during painful diabetic neuropathy.
Specimen part, Treatment
View SamplesPPARalpha is a ligand-activated transcription factor involved in the regulation of nutrient metabolism and inflammation. Although much is already known about the function of PPARalpha in hepatic lipid metabolism, many PPARalpha-dependent pathways and genes have yet to be discovered. In order to obtain an overview of PPARalpha-regulated genes relevant to lipid metabolism, and to probe for novel candidate PPARalpha target genes, livers from several animal studies in which PPARalpha was activated and/or disabled were analyzed by Affymetrix GeneChips. Numerous novel PPARalpha-regulated genes relevant to lipid metabolism were identified. Out of this set of genes, eight genes were singled out for study of PPARalpha-dependent regulation in mouse liver and in mouse, rat, and human primary hepatocytes, including thioredoxin interacting protein (Txnip), electron-transferring-flavoprotein beta polypeptide (Etfb), electron-transferring-flavoprotein dehydrogenase (Etfdh), phosphatidylcholine transfer protein (Pctp), endothelial lipase (EL, Lipg), adipose triglyceride lipase (Pnpla2), hormone-sensitive lipase (HSL, Lipe), and monoglyceride lipase (Mgll). Using an in silico screening approach, one or more PPAR response elements (PPREs) were identified in each of these genes. Regulation of Pnpla2, Lipe, and Mgll, which are involved in triglyceride hydrolysis, was studied under conditions of elevated hepatic lipids. In wild-type mice fed a high fat diet, the decrease in hepatic lipids following treatment with the PPARalpha agonist Wy14643 was paralleled by significant up-regulation of Pnpla2, Lipe, and Mgll, suggesting that induction of triglyceride hydrolysis may contribute to the anti-steatotic role of PPARalpha. Our study illustrates the power of transcriptional profiling to uncover novel PPARalpha-regulated genes and pathways in liver.
Comprehensive analysis of PPARalpha-dependent regulation of hepatic lipid metabolism by expression profiling.
Sex, Specimen part
View SamplesPPAR is a ligand-activated transcription factor involved in the regulation of nutrient metabolism and inflammation. Although much is already known about the function of PPAR in hepatic lipid metabolism, many PPAR-dependent pathways and genes have yet to be discovered. In order to obtain an overview of PPAR-regulated genes relevant to lipid metabolism, and to probe for novel candidate PPAR target genes, livers from several animal studies in which PPAR was activated and/or disabled were analyzed by Affymetrix GeneChips. Numerous novel PPAR-regulated genes relevant to lipid metabolism were identified. Out of this set of genes, eight genes were singled out for study of PPAR-dependent regulation in mouse liver and in mouse, rat, and human primary hepatocytes, including thioredoxin interacting protein (Txnip), electron-transferring-flavoprotein polypeptide (Etfb), electron-transferring-flavoprotein dehydrogenase (Etfdh), phosphatidylcholine transfer protein (Pctp), endothelial lipase (EL, Lipg), adipose triglyceride lipase (Pnpla2), hormone-sensitive lipase (Lipe), and monoglyceride lipase (Mgll). Using an in silico screening approach, one or more PPAR response elements (PPREs) were identified in each of these genes. Since Pnpla2, Lipe, and Mgll contribute to hepatic triglyceride hydrolysis, gene regulation was studied under conditions of elevated hepatic lipids. In wild-type mice fed a high fat diet, the decrease in hepatic lipids following treatment with the PPAR agonist Wy14643 was paralleled by significant up-regulation of Pnpla2, Lipe, and Mgll, suggesting that induction of triglyceride hydrolysis may contribute to the anti-steatotic role of PPAR. Our study illustrates the power of transcriptional profiling to uncover novel PPAR-regulated genes and pathways in liver.
Comprehensive analysis of PPARalpha-dependent regulation of hepatic lipid metabolism by expression profiling.
Sex, Specimen part
View SamplesPPAR is a ligand-activated transcription factor involved in the regulation of nutrient metabolism and inflammation. Although much is already known about the function of PPAR in hepatic lipid metabolism, many PPAR-dependent pathways and genes have yet to be discovered. In order to obtain an overview of PPAR-regulated genes relevant to lipid metabolism, and to probe for novel candidate PPAR target genes, livers from several animal studies in which PPAR was activated and/or disabled were analyzed by Affymetrix GeneChips. Numerous novel PPAR-regulated genes relevant to lipid metabolism were identified. Out of this set of genes, eight genes were singled out for study of PPAR-dependent regulation in mouse liver and in mouse, rat, and human primary hepatocytes, including thioredoxin interacting protein (Txnip), electron-transferring-flavoprotein polypeptide (Etfb), electron-transferring-flavoprotein dehydrogenase (Etfdh), phosphatidylcholine transfer protein (Pctp), endothelial lipase (EL, Lipg), adipose triglyceride lipase (Pnpla2), hormone-sensitive lipase (Lipe), and monoglyceride lipase (Mgll). Using an in silico screening approach, one or more PPAR response elements (PPREs) were identified in each of these genes. Since Pnpla2, Lipe, and Mgll contribute to hepatic triglyceride hydrolysis, gene regulation was studied under conditions of elevated hepatic lipids. In wild-type mice fed a high fat diet, the decrease in hepatic lipids following treatment with the PPAR agonist Wy14643 was paralleled by significant up-regulation of Pnpla2, Lipe, and Mgll, suggesting that induction of triglyceride hydrolysis may contribute to the anti-steatotic role of PPAR. Our study illustrates the power of transcriptional profiling to uncover novel PPAR-regulated genes and pathways in liver.
Comprehensive analysis of PPARalpha-dependent regulation of hepatic lipid metabolism by expression profiling.
Sex, Specimen part
View SamplesScope: As a result of population ageing, the number of Alzheimer’s disease (AD) patients has rapidly increased. There are many hypothesises on the pathogenesis of AD, but its detailed molecular mechanism is still unknown, and so no effective preventive or therapeutic measures have been established. Some reports showed a decrease in levels of norepinephrine (NE) has been suspected to be involved in the decline of cognitive function in AD patients and NE concentrations were decreased in postmortem AD patient brains. Tyr-Trp was identified as being the most effective dipeptide in enhancing norepinephrine (NE) synthesis and metabolism. And Tyr-Trp treatment ameliorated the short-term memory dysfunction in AD model mice caused by amyloid beta (Aβ) 25-35. So, the purpose of this study was to investigate the preventive or/and protective effects of Tyr-Trp administration in AD model mice.
Tyr-Trp administration facilitates brain norepinephrine metabolism and ameliorates a short-term memory deficit in a mouse model of Alzheimer's disease.
Specimen part
View SamplesThe mouse anterior-posterior (A-P) axis polarization is preceded by formation of the distal visceral endoderm (DVE). However, the mechanism of the emergence of DVE cells is not well understood. Here, we show by in vitro culturing of embryos immediately after implantation in micro-fabricated cavities (narrow; 90 micro-meter, wide; 180 miro-meter in diameter) that the external mechanical cues exerted on the embryo, i.e. cultured in the narrow cavity, are crucial for DVE formation as well as elongated egg cylinder shape. This implies that these developmental events immediately after implantation are not simply embryo-autonomous processes but require extrinsic mechanical factors. Further whole genome-wide gene expression profiles with DNA microarray revealed that no significant difference of transcripts were evident with or without mechanical cues except DVE-related markers. Thus, we propose that external mechanical cues rather than not specific molecular pathways can trigger the establishment of the A-P axis polarization, which is one of the fundamental proccesses of mammalian embryogenesis.
External mechanical cues trigger the establishment of the anterior-posterior axis in early mouse embryos.
Specimen part, Treatment
View SamplesPPAR is a ligand-activated transcription factor involved in the regulation of nutrient metabolism and inflammation. Although much is already known about the function of PPAR in hepatic lipid metabolism, many PPAR-dependent pathways and genes have yet to be discovered. In order to obtain an overview of PPAR-regulated genes relevant to lipid metabolism, and to probe for novel candidate PPAR target genes, livers from several animal studies in which PPAR was activated and/or disabled were analyzed by Affymetrix GeneChips. Numerous novel PPAR-regulated genes relevant to lipid metabolism were identified. Out of this set of genes, eight genes were singled out for study of PPAR-dependent regulation in mouse liver and in mouse, rat, and human primary hepatocytes, including thioredoxin interacting protein (Txnip), electron-transferring-flavoprotein polypeptide (Etfb), electron-transferring-flavoprotein dehydrogenase (Etfdh), phosphatidylcholine transfer protein (Pctp), endothelial lipase (EL, Lipg), adipose triglyceride lipase (Pnpla2), hormone-sensitive lipase (Lipe), and monoglyceride lipase (Mgll). Using an in silico screening approach, one or more PPAR response elements (PPREs) were identified in each of these genes. Since Pnpla2, Lipe, and Mgll contribute to hepatic triglyceride hydrolysis, gene regulation was studied under conditions of elevated hepatic lipids. In wild-type mice fed a high fat diet, the decrease in hepatic lipids following treatment with the PPAR agonist Wy14643 was paralleled by significant up-regulation of Pnpla2, Lipe, and Mgll, suggesting that induction of triglyceride hydrolysis may contribute to the anti-steatotic role of PPAR. Our study illustrates the power of transcriptional profiling to uncover novel PPAR-regulated genes and pathways in liver.
Comprehensive analysis of PPARalpha-dependent regulation of hepatic lipid metabolism by expression profiling.
Sex
View SamplesPPAR is a ligand-activated transcription factor involved in the regulation of nutrient metabolism and inflammation. Although much is already known about the function of PPAR in hepatic lipid metabolism, many PPAR-dependent pathways and genes have yet to be discovered. In order to obtain an overview of PPAR-regulated genes relevant to lipid metabolism, and to probe for novel candidate PPAR target genes, livers from several animal studies in which PPAR was activated and/or disabled were analyzed by Affymetrix GeneChips. Numerous novel PPAR-regulated genes relevant to lipid metabolism were identified. Out of this set of genes, eight genes were singled out for study of PPAR-dependent regulation in mouse liver and in mouse, rat, and human primary hepatocytes, including thioredoxin interacting protein (Txnip), electron-transferring-flavoprotein polypeptide (Etfb), electron-transferring-flavoprotein dehydrogenase (Etfdh), phosphatidylcholine transfer protein (Pctp), endothelial lipase (EL, Lipg), adipose triglyceride lipase (Pnpla2), hormone-sensitive lipase (Lipe), and monoglyceride lipase (Mgll). Using an in silico screening approach, one or more PPAR response elements (PPREs) were identified in each of these genes. Since Pnpla2, Lipe, and Mgll contribute to hepatic triglyceride hydrolysis, gene regulation was studied under conditions of elevated hepatic lipids. In wild-type mice fed a high fat diet, the decrease in hepatic lipids following treatment with the PPAR agonist Wy14643 was paralleled by significant up-regulation of Pnpla2, Lipe, and Mgll, suggesting that induction of triglyceride hydrolysis may contribute to the anti-steatotic role of PPAR. Our study illustrates the power of transcriptional profiling to uncover novel PPAR-regulated genes and pathways in liver.
Comprehensive analysis of PPARalpha-dependent regulation of hepatic lipid metabolism by expression profiling.
Sex, Specimen part
View SamplesPPAR is a ligand-activated transcription factor involved in the regulation of nutrient metabolism and inflammation. Although much is already known about the function of PPAR in hepatic lipid metabolism, many PPAR-dependent pathways and genes have yet to be discovered. In order to obtain an overview of PPAR-regulated genes relevant to lipid metabolism, and to probe for novel candidate PPAR target genes, livers from several animal studies in which PPAR was activated and/or disabled were analyzed by Affymetrix GeneChips. Numerous novel PPAR-regulated genes relevant to lipid metabolism were identified. Out of this set of genes, eight genes were singled out for study of PPAR-dependent regulation in mouse liver and in mouse, rat, and human primary hepatocytes, including thioredoxin interacting protein (Txnip), electron-transferring-flavoprotein polypeptide (Etfb), electron-transferring-flavoprotein dehydrogenase (Etfdh), phosphatidylcholine transfer protein (Pctp), endothelial lipase (EL, Lipg), adipose triglyceride lipase (Pnpla2), hormone-sensitive lipase (Lipe), and monoglyceride lipase (Mgll). Using an in silico screening approach, one or more PPAR response elements (PPREs) were identified in each of these genes. Since Pnpla2, Lipe, and Mgll contribute to hepatic triglyceride hydrolysis, gene regulation was studied under conditions of elevated hepatic lipids. In wild-type mice fed a high fat diet, the decrease in hepatic lipids following treatment with the PPAR agonist Wy14643 was paralleled by significant up-regulation of Pnpla2, Lipe, and Mgll, suggesting that induction of triglyceride hydrolysis may contribute to the anti-steatotic role of PPAR. Our study illustrates the power of transcriptional profiling to uncover novel PPAR-regulated genes and pathways in liver.
Comprehensive analysis of PPARalpha-dependent regulation of hepatic lipid metabolism by expression profiling.
Sex, Specimen part
View Samples