CD8+ T-cells inhibit virus replication in SIV-infected rhesus macaques (RM). However, it is not clear how SIV infection is controlled in germinal center during chronic SIV infection and limited information exists on the characteristics of CXCR5+ CD8 T cells during chronic SIV/HIV infection. In this study, we used functional genomics to investigate characteristic features and potential mechanisms of CXCR5+ and CXCR5- SIV specific CD8 T cells for the control of pathogenic SIV infection. Six chronically SIV infected RMs, three SIVE660 infected and three SIV mac251 infected that are positive for Mamu A01 allele were selected and SIV-specific CXCR5+ and CXCR5- CD8 T cells were sorted based on CXCR5 expression. RNA from sorted cells were extracted and microarray were performed and analysed. Principal component analysis demonstrated that overall gene expression difference between CXCR5+ and CXCR5- SIV-specific CD8 T cells. Interestingly, the CXCR5+ CD8 T cells revealed a distinct gene signature pattern when compared to CXCR5- CD8 T cells. Unlike the CXCR5- CD8 T cells, the CXCR5+ CD8 T cells expressed higher levels of genes associated with Tfh CD4 T cells such as the master transcription factor Bcl6, CD200, and CTLA4 as well as markers associated with Th2 CD4 T cells such as IL-4R (CD124), CCR4, STAT6, NFATC, and IL-10. Effector molecules typically observed in cytotoxic CD8 T cells such as granzyme A, B, and K were expressed at lower levels on CXCR5+ CD8 T cells compared to their CXCR5- counterparts. CXCR5+ CD8 T cells also expressed higher levels of molecules associated with co-stimulation/antigen presentation such as CD40, CD83, 41BBL and MAMU-DRA. The CXCR5+ CD8 also expressed higher levels of inhibitory receptors such as CD200 and SPRY2 but lower levels of other inhibitory receptors CD160 and CD244. The functional consequence of the expression of these molecules is yet to be determined. Additionally, CXCR5+ CD8 T cells expressed higher levels of the anti-apoptotic gene Bcl-2 and lower levels of the pro-apoptotic gene annexin, suggestive of their better survival potential during chronic SIV infection. Collectively, these results demonstrate that SIV specific CXCR5+ CD8 T cells possess a unique gene expression signature compared to SIV-specific CXCR5- CD8 T cells.
Dynamics of SIV-specific CXCR5+ CD8 T cells during chronic SIV infection.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Role of CD34 antigen in myeloid differentiation of human hematopoietic progenitor cells.
No sample metadata fields
View SamplesIn order to investigate the role of CD34 antigen in haematopoietic commitment, we overexpressed the human CD34 cDNA in human CD34+ cells by retroviral gene transfer.
Role of CD34 antigen in myeloid differentiation of human hematopoietic progenitor cells.
No sample metadata fields
View SamplesIn order to investigate the role of CD34 antigen in haematopoietic commitment, we silenced the CD34 gene expression in CD34+ stem/progenitor cells using a siRNA approach.
Role of CD34 antigen in myeloid differentiation of human hematopoietic progenitor cells.
No sample metadata fields
View SamplesUnderstanding Natural Killer (NK) cell anatomical distribution is key to dissect the role of these unconventional lymphocytes in physiological and disease conditions. In mouse, NK cells have been detected in various lymphoid and non-lymphoid organs, while in humans the current knowledge of NK cell distribution at steady state is mainly restricted to lymphoid tissues. The translation to humans of findings obtained in mice is facilitated by the identification of NK cell markers conserved between these two species. The Natural Cytotoxicity Receptor (NCR) NKp46 is a marker of the NK cell lineage evolutionary conserved in mammals. In mice, NKp46 is also present on rare T cell subsets and on a subset of gut Innate Lymphoid Cells (ILCs) expressing the retinoic acid receptor-related orphan receptor gammat (RORgammat) transcription factor. Here, we documented the distribution and the phenotype of human NKp46+ cells in lymphoid and non-lymphoid tissues isolated from healthy donors. Human NKp46+ cells were found in splenic red pulp, in lymph nodes, in lungs and gut lamina propria, thus mirroring mouse NKp46+ cell distribution. We identified a novel cell subset of CD56dimNKp46low cells that includes RORgammat+ILCs with a lineage-CD94-CD117brightCD127bright phenotype.We also included data regarding the genome-wide transcriptional profiles of human healthy colonic NK cells and RORgammat+ILCs.The use of NKp46 thus contributes to establish the basis for analyzing quantitative and qualitative changes of NK cell and ILC subsets in human diseases.
Mapping of NKp46(+) Cells in Healthy Human Lymphoid and Non-Lymphoid Tissues.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Dynamic Transcriptional and Epigenetic Regulation of Human Epidermal Keratinocyte Differentiation.
Specimen part, Disease
View SamplesTranscriptional profiling of KP and DK through RNA-seq Overall design: RNA-sequencing of KP and DK
Dynamic Transcriptional and Epigenetic Regulation of Human Epidermal Keratinocyte Differentiation.
No sample metadata fields
View SamplesGene expression profiling of progenitor and differentiated keratinocytes by Affymetrix microarray
Dynamic Transcriptional and Epigenetic Regulation of Human Epidermal Keratinocyte Differentiation.
Specimen part
View SamplesInvestigation of promoters usage in KP cells Overall design: KP cells promoter usage profiling by CAGE-seq
Dynamic Transcriptional and Epigenetic Regulation of Human Epidermal Keratinocyte Differentiation.
No sample metadata fields
View SamplesGene transfer into HSCs by gammaretroviral vectors (RV) is an effective treatment for inherited blood disorders, although potentially limited by the risk of insertional mutagenesis. We evaluated the genomic impact of RV integration in T-lymphocytes from adenosine deaminase (ADA)-Severe combined immunodeficiency (SCID) patients 10 to 30 months after infusion of autologous, genetically-corrected CD34+ cells. Expression profiling on ex vivo T-cell bulk population revealed no difference with respect to healthy controls. To assess the effect of vector integration on gene expression at the single cell level, primary T-cell clones were isolated from two patients. T-cell clones harboured either one or two vector copies per cell and displayed partial to full correction of ADA expression, purine metabolism and TCR-driven functions. Analysis of retroviral integration sites (RIS) indicated a high diversity in T-cell origin, consistent with the polyclonal TCR-Vbeta repertoire. Quantitative transcript analysis of 120 genes within a 200kb-window around RIS showed modest (2.8- to 5.2-fold) disregulation of 5.8% genes in 18.6% of the T-cell clones compared to controls. Nonetheless, affected clones maintained a stable phenotype and normal functions in vitro. These results confirm that RV-mediated gene transfer for ADA-SCID is safe, and provide crucial information for the development of future gene therapy protocols.
Integration of retroviral vectors induces minor changes in the transcriptional activity of T cells from ADA-SCID patients treated with gene therapy.
Specimen part
View Samples